Cho a;b;c > 0 và a+b+c = 3. Chứng minh rằng \(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+bc+b^2}\)≥1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 120 chia hết cho a
300 chia hết cho a
420 chia hết cho a
=> a \(\in\)ƯC(120,300.420)
Ta có:
120 = 23.3.5
300 = 22.3.52
420 = 22.3.5.7
UCLN(120,300,420) = 22.3.5 = 60
UC(120,300,420) = Ư(60) = {1;2;3;4;5;6;10;12;15;20;30;60}
Vì a > 20 nên a = {30;60}
b) 56 chia hết cho a
560 chia hết cho a
5600 chia hết cho a
=>a \(\in\)ƯC(56,560,5600)
Ta có:
56 = 23.7
560 = 24.5.7
5600 = 25.52.7
UCLN(56,560,5600) = 23.7 = 56
UC(56,560,5600) = Ư(56) = {1;2;4;7;8;14;28;56}
Vì a lớn nhất nên a = 56
Nếu chia hết cho 2 và 5, không chia hết cho 9 thì chỉ có 0 thôi, nhưng nếu mà chia hết cho cả 3 thì đề sai r đó
A = 200*
Mà A chia hết cho 2 và 5, các số chia hết cho 2 và 5 thì có chữ số tận cùng là 0
NHƯNG nếu dấu sao là 0 thì có số 2000, mà 2000 ko chia hết cho 3.
Như vậy, đề sai.
der4fdtfffffffffffeeeeeeqqqqqqqqqwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqwqqwerttyyuiiop[]asdfghjkl;'\zxcvbnm,./1234567890-=
\(A=\sum\frac{a^3}{a^2+ab+b^2}\ge\sum\frac{a^3}{\frac{3}{2}\left(a^2+b^2\right)}\)
\(\sum\frac{a^3}{a^2+b^2}\ge\sum\left(a-\frac{b}{2}\right)=\frac{3}{2}\)
\(\Rightarrowđpcm."="\Leftrightarrow a=b=c=1\)
Cách 2 :
\(\frac{a^3-b^3}{a^2+ab+b^2}+\frac{b^3-c^3}{b^2+bc+c^2}+\frac{c^3-a^3}{a^2+ac+c^2}=a-b+b-c+c-a=0\)
\(\Rightarrow\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ac+a^2}=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{a^2+ac+c^2}\)
Đặt \(A=\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{a^2+ac+c^2}\)
\(B=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ac+a^2}\)
\(\Rightarrow A+B=\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{a^2+ab+b^2}+\frac{\left(b+c\right)\left(b^2-bc+c^2\right)}{b^2+bc+c^2}+\frac{\left(a+c\right)\left(a^2-ac+c^2\right)}{a^2+ac+c^2}\)
Đặt \(P=\frac{a^2-ab+b^2}{a^2+ab+b^2}\) => \(P=\frac{1}{3}+\frac{2\left(a-b\right)^2}{a^2+ab+b^2}\ge\frac{1}{3}\)
\(\Rightarrow P\left(a+b\right)\ge\frac{1}{3}\left(a+b\right)\)
Làm tương tự như vậy , ta có :
\(A+B\ge\frac{a+b}{3}+\frac{b+c}{3}+\frac{c+a}{3}=\frac{2\left(a+b+c\right)}{3}=\frac{2.3}{3}=2\)
Mà \(A=B\Rightarrow A\ge1\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=c=1\)
Vậy ...