cho hình chóp tứ giác đều S.ABCD có cạnh đáy AB=20cm; cạnh bên SA=24cm
a) Tính chiều cao SO và thể tích hình chóp
b) Tính diện tích toàn phần của hình chóp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) S.ABCD là hình chóp tứ giác đều
⇒ ABCD là hình vuông
⇒ AC = AB√2 = 20√2 (cm).
SO là chiều cao của hình chóp
⇒ O = AC ∩ BD và SO ⊥ (ABCD)
⇒ SO ⊥ AO
⇒ ΔSAO vuông tại O
⇒ SO2 + OA2 = SA2
⇒ SO2 = SA2 – OA2 = SA2 – (AC/2)2 = 242 - = 376
⇒ SO = √376 ≈ 19,4 (cm).
Thể tích hình chóp:
b) Gọi H là trung điểm của CD
SH2 = SD2 – DH2 = 242 – = 476
⇒ SH = √476 ≈ 21,8 (cm)
⇒ Sxq = p.d = 2.AB.SH = 2.20.√476 ≈ 872,7 (cm2 ).
Sđ = AB2 = 202 = 400 (cm2 )
⇒ Stp = Sxq + Sđ = 872,7 + 400 = 1272,7 (cm2 ).
a) S.ABCD là hình chóp tứ giác đều
⇒ ABCD là hình vuông
⇒ AC = AB√2 = 20√2 (cm).
SO là chiều cao của hình chóp
⇒ O = AC ∩ BD và SO ⊥ (ABCD)
⇒ SO ⊥ AO
⇒ ΔSAO vuông tại O
⇒ SO2 + OA2 = SA2
\(\Rightarrow SO^2=SA^2-OA^2=SA^2-\left(\frac{AC}{2}\right)^2=24^2-\left(\frac{20\sqrt{2}}{2}\right)^2=376\)
⇒ SO = √376 ≈ 19,4 (cm).
Thể tích hình chóp :
\(V=\frac{1}{2}SO.S_{ABCD}=\frac{1}{3}.\sqrt{376}.20^2\approx2585,43\left(cm^3\right)\)
b) Gọi H là trung điểm của CD
\(SH^2=SD^2-DH^2=24^2-\left(\frac{20}{2}\right)^2=476\)
⇒ SH = √476 ≈ 21,8 (cm)
⇒ Sxp = p.d = 2.AB.SH = 2.20.√476 ≈ 872,7 (cm2 ).
Sđ= AB2 = 202 = 400 (cm2 )
⇒ Stq = Sxq + Sđ = 872,7 + 400 = 1272,7 (cm2 ).
Hướng dẫn làm bài:
a) SO2=SD2−OD2=242−(20√22)2=376SO2=SD2−OD2=242−(2022)2=376
= > SO≈19,4(cm)SO≈19,4(cm)
V=13.202.19,4≈2586,6V=13.202.19,4≈2586,6 (cm2)
b)Gọi H là trung điểm của CD.
SH2=SD2−DH2=242−(202)2=476SH2=SD2−DH2=242−(202)2=476
=>SH ≈ 21,8 (cm)
Sxq≈12.80.21,8≈872Sxq≈12.80.21,8≈872 (cm2)
Sd=AB2=202=400(cm2)Sd=AB2=202=400(cm2)
Nên Stp=Sxq+Sd=872+2.400=1672(cm)2
Đáp án D
Gọi O là giao AC và BD, M là trung điểm CD
Vì S.ABCD là hình chóp đều
=> O là hình chiếu của S trên (ABCD)
Ta có: OM ⊥ CD và SM ⊥ CD
Vậy
( Vào TKHĐ là thấy hính nha bạn )
a) S.ABCD là hình chóp tứ giác đều
=> ABCD là hình vuông
=> .\(AC=AB\sqrt{2}=20\sqrt{2}\left(cm\right)\)
SO là chiều cao của hình chóp
=> O = AC ∩ BD và SO ⊥ (ABCD)
=> SO ⊥ AO
=> ΔSAO vuông tại O
=> SO2 + OA2 = SA2
\(\Rightarrow SO^2=SA^2-OA^2=SA^2-\left(\frac{AC}{2}\right)^2=24^2-\left(\frac{20\sqrt{2}}{2}\right)^2=376\)
=> SO = \(\sqrt{376}\approx19,4\left(cm\right)\)(cm).
Thể tích hình chóp :
\(V=\frac{1}{3}SO.S_{ABCD}=\frac{1}{3}.\sqrt{376}.20^2=2585,43\left(cm^3\right)\)
b) Gọi H là trung điểm của CD :
\(SH^2=SD^2-DH^2=24^2-\left(\frac{20}{2}\right)^2=476\)
\(\Rightarrow SH=\sqrt{476}\approx21,8\left(cm\right)\)
=> Sxq = p.d = 2.AB.SH = \(2.20.\sqrt{476}\approx\) 872,7 (cm2 ).
Sđ = AB2 = 202 = 400 (cm2 )
⇒ Stp = Sxq + Sđ = 872,7 + 400 = 1272,7 (cm2 ).