cho ab-ac+bc-c2= -1 và a;b;c thuộc Z Khi đó a+b=?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ab - ac + bc - c2= -1
a(b-c) + c(b-c) = -1
(a+b) . (b-c) = -1
Nếu a + c = 1 thì b - c = -1
a = 1 - c; b = c - 1
Vậy a và b là hai số đối nhau.=>(đpcm)
Lời giải:
$P=\frac{a^2b^2+b^2c^2+c^2a^2}{abc}$
Áp dụng BĐT AM-GM, dạng $(x+y+z)^2\geq 3(xy+yz+xz)$ ta có:
$(a^2b^2+b^2c^2+c^2a^2)^2\geq 3(a^2b^4c^2+a^4b^2c^2+a^2b^2c^4)$
$=3a^2b^2c^2(a^2+b^2+c^2)=3a^2b^2c^2$
$\Rightarrow a^2b^2+b^2c^2+c^2a^2\geq \sqrt{3}abc$
$\Rightarrow P=\frac{a^2b^2+b^2c^2+c^2a^2}{abc}\geq \sqrt{3}$
Vậy $P_{\min}=\sqrt{3}$. Giá trị này đạt tại $a=b=c=\frac{1}{\sqrt{3}}$
ab-ac+bc-c2=-1
=>a.(b-c)+c.(b-c)=-1
=>(b-c)(a+c)=-1=1.(-1)=(-1).1
=>b-c=1 và a+c=-1 hoặc b-c=-1 hoặc a+c=1
=>(b-c)+(a+c)=1+(-1) hoặc (b-c)+(a+c)=-1+1
=>b-c+a+c=0 hoặc b-c+a+c=0
=>a+b=0
\(\left(a+b+c\right)^2=a^2+b^2+c^2\Leftrightarrow ab+bc+ca=0\)
\(\Rightarrow a^3b^3+b^3c^3+c^3a^3=3a^2b^2c^2\)
Ta có:
\(\dfrac{bc}{a^2}+\dfrac{ac}{b^2}+\dfrac{ab}{c^2}=\dfrac{a^3b^3+b^3c^3+c^3a^3}{a^2b^2c^2}=\dfrac{3a^2b^2c^2}{a^2b^2c^2}=3\)
dễ mà, tick đi, mik chỉ cho