Rút Gọn
a)\(S=\sqrt{\frac{36a^2b^6c^8}{4}}\) với a < 0; b < 0
b)\(S=\sqrt{\frac{1}{abc}\left(\sqrt{\frac{abc^2}{4}+\sqrt{\frac{ab^5c^3}{9}}}\right)}\) với a > 0 ; b > 0 ; c > 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a)sqrt{(sqrt7-4)^2}+sqrt7`
`=|sqrt7-4|+sqrt7`
`=4-sqrt7+sqrt7=4`
`b)\sqrt{81a}-sqrt{144a}+sqrt{36a}(a>=0)`
`=9sqrta-12sqrta+6sqrta=3sqrta`
a) Ta có: \(\sqrt{\left(\sqrt{7}-4\right)^2}+\sqrt{7}\)
\(=4-\sqrt{7}+\sqrt{7}\)
=4
b) Ta có: \(\sqrt{81a}-\sqrt{144a}+\sqrt{36a}\)
\(=9\sqrt{a}-12\sqrt{a}+6\sqrt{a}\)
\(=3\sqrt{a}\)
a) \(\sqrt{\frac{2a^2b^4}{50}}=\sqrt{\frac{a^2b^4}{25}}=\frac{\sqrt{a^2b^4}}{\sqrt{25}}=\frac{ab^2}{5}\)
b) \(\frac{\sqrt{2ab^2}}{\sqrt{162}}=\sqrt{\frac{2ab^2}{162}}=\sqrt{\frac{ab^2}{81}}=\frac{\sqrt{ab^2}}{\sqrt{81}}=\frac{b\sqrt{a}}{9}\)
\(=\frac{\sqrt{a+4\sqrt{a-4}}+\sqrt{a-4\sqrt{a-4}}}{\sqrt{1-\frac{8}{a}+\frac{16}{a^2}}}\)
\(=\frac{\sqrt{\left(\sqrt{a-4}+2\right)^2}+\sqrt{\left(\sqrt{a-4}\right)-2}}{\sqrt{\left(1-\frac{4}{a}\right)^2}}\)
\(=\frac{\sqrt{a-4}+2+\sqrt{a-4}-2}{1-\frac{4}{a}}\)
\(=\frac{2a}{\sqrt{a-4}}\)
\(P=\left(\frac{a+\sqrt{a^2-b^2}}{a-\sqrt{a^2-b^2}}-\frac{a-\sqrt{a^2-b^2}}{a+\sqrt{a^2-b^2}}\right):\frac{4\sqrt{a^4-a^2b^2}}{b^2}\)
\(=\left[\frac{\left(a+\sqrt{a^2-b^2}\right)\left(a+\sqrt{a^2-b^2}\right)-\left(a-\sqrt{a^2-b^2}\right)\left(a-\sqrt{a^2-b^2}\right)}{\left(a-\sqrt{a^2-b^2}\right)\left(a+\sqrt{a^2-b^2}\right)}\right]:\frac{4\sqrt{a^2\left(a^2-b^2\right)}}{b^2}\)
\(=\left[\frac{\left(a+\sqrt{a^2-b^2}\right)^2-\left(a-\sqrt{a^2-b^2}\right)}{a^2-\left(a^2-b^2\right)}\right]:\frac{4a\sqrt{a^2-b^2}}{b^2}\)
\(=\frac{\left(a+\sqrt{a^2-b^2}+a-\sqrt{a^2-b^2}\right)\left(a+\sqrt{a^2-b^2}-a+\sqrt{a^2-b^2}\right)}{b^2}\cdot\frac{b^2}{4a\sqrt{a^2-b^2}}\)
\(=\frac{2a\cdot2\sqrt{a^2-b^2}}{b^2}\cdot\frac{b^2}{4a\sqrt{a^2-b^2}}\)
\(=1\)
\(B=\frac{2}{x^2-y^2}\cdot\sqrt{\frac{9\left(x^2+2xy+y^2\right)}{4}}=\frac{2}{\left(x-y\right)\left(x+y\right)}\cdot\sqrt{\frac{9\left(x+y\right)^2}{4}}\)
\(=\frac{2}{\left(x-y\right)\left(x+y\right)}\cdot\frac{\sqrt{9\left(x+y\right)^2}}{\sqrt{4}}=\frac{2}{\left(x-y\right)\left(x+y\right)}\cdot\frac{3\left(x+y\right)}{2}\)(vì x > -y <=> x + y > 0)
\(=\frac{3}{x-y}\)
\(C=\sqrt{\frac{2a}{3}}.\sqrt{\frac{3a}{8}}=\sqrt{\frac{2a}{3}\cdot\frac{3a}{8}}=\sqrt{\frac{6a^2}{24}}=\sqrt{\frac{a^2}{4}}=\frac{a}{2}\)(vì a > = 0)
\(D=\frac{1}{a-b}\cdot\sqrt{a^4\left(a-b\right)^2}=\frac{1}{a-b}\cdot a^2\left(a-b\right)=a^2\)(a > b > 0)
câu cuối điều kiện là a>b
\(\frac{1}{a-b}\sqrt{a^4\left(a-b\right)^2}=\frac{a^2\left|a-b\right|}{a-b}=\frac{a^2\left(a-b\right)}{a-b}=a^2\) (vì a>b)