Cho 2 số tự nhiên a;b biết : ab =2015 ^2016
Hỏi a+b có chia hết cho 2016 ko?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Khi bớt số tự nhiên \(a\)ở tử và thêm ở mẫu thì tổng của tử số và mẫu số không đổi.
Tổng của tử số và mẫu số là:
\(23+17=40\)
Nếu phân số mới có tử số là \(2\)phần thì mẫu số là \(3\)phần.
Tổng số phần bằng nhau là:
\(2+3=5\)(phần)
Tử số mới là:
\(40\div5\times2=16\)
Số tự nhiên \(a\)là:
\(23-16=7\)
\(\dfrac{7}{2}\) < a < \(\dfrac{14}{3}\)
\(\dfrac{7\times3}{2\times3}\) < a < \(\dfrac{14\times2}{3\times2}\)
\(\dfrac{21}{6}\) < \(\dfrac{6\times a}{6}\) < \(\dfrac{28}{6}\)
21 < 6x a < 28
vì 21 < 22 < 23 < 24 < 25 < 26 < 27 < 28
6 x a = 22; 23; 24; 25; 26; 27
a = 11/3; 23/6; 4; 25/6; 13/3; 27/6
vì a là số tự nhiên nên a = 4
1/
Gọi 3 số tự nhiên liên tiếp là n; n+1; n+2
+ Nếu \(n⋮3\) Bài toán đã được c/m
+ Nếu n chia 3 dư 1 => \(n+2⋮3\)
+ Nếu n chia 3 dư 2 => \(n+1⋮3\)
Vậy trong 3 số tự nhiên liên tiếp bao giờ cũng có 1 số chia hết cho 3
2/ \(a-10⋮24\) => a-10 đồng thời chia hết cho 3 và 8 vì 3 và 8 nguyên tố cùng nhau
\(\Rightarrow a-10=8k\Rightarrow a=8k+10⋮2\)
\(a=8k+10=8k+8+2=8\left(k+1\right)+2=2.4.\left(k+1\right)+2\)
\(2.4.\left(k+1\right)⋮4\) => a không chia hết cho 4
3/
a/ Gọi 3 số TN liên tiếp là n; n+1; n+2
\(\Rightarrow n+n+1+n+2=3n+3=3\left(n+1\right)⋮3\)
b/ Gọi 4 số TN liên tiếp là n; n+1; n+2; n+3
\(\Rightarrow n+n+1+n+2+n+3=4n+6=4n+4+2=4\left(n+1\right)+2\)
Ta có \(4\left(n+1\right)⋮4\) => tổng 4 số TN liên tiếp không chia hết cho 4