Bài 1:Thu gọn và tính:
a)A=\(\left(\dfrac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}+\sqrt{b}}\right)\left(\dfrac{\sqrt{a}+\sqrt{b}}{a-b}\right)^2\) với\(a^2=6-3\sqrt{3};b^2=2+\sqrt{3}\)
b)B=\(\dfrac{\sqrt{2x+2\sqrt{x^2-4}}}{\sqrt{x^2-4}+x+2}\)với\(x=1+\sqrt{5}\)
Bài 2: Tìm GTLN GTNN của \(C=\sqrt{x-2-2\sqrt{x-3}}-\sqrt{x+1-4\sqrt{x-3}}\)
Bài 1: Bạn đã post 1 lần
Bài 2:
\(C=\sqrt{(x-3)-2\sqrt{x-3}+1}-\sqrt{(x-3)-4\sqrt{x-3}+4}\)
\(=\sqrt{(\sqrt{x-3}-1)^2}-\sqrt{(\sqrt{x-3}-2)^2}\)
\(=|\sqrt{x-3}-1|-|\sqrt{x-3}-2|\)
Áp dụng BĐT dạng $|a|-|b|\leq |a-b|(*)$ thì:
$C\leq |\sqrt{x-3}-1-(\sqrt{x-3}-2)|$ hay $C\leq 1$
Vậy $C_{\max}=1$
Mặt khác, vẫn áp dụng BĐT $(*)$:
\(|\sqrt{x-3}-1|=|(\sqrt{x-3}-2-(-1)|\geq |\sqrt{x-3}-2|-|-1|\)
\(=|\sqrt{x-3}-2|-1\Rightarrow C\geq -1\)
Vậy $C_{\min}=-1$