K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 5 2015

Bài này anh nhớ là làm cho chú rồi nhỉ ! Thooi lafm lại:

Với công thức ab = ƯCLN(a; b).BCNN(a; b)

nên suy ra ƯCLN(a; b) = 2940 : 210 = 14

Vậy a = 14m ; b = 14 n                  (\(m\ge n\))

Thay vào a.b = 2940 được:

               14m.14n = 2940

                 => m.n = 2940 : (14.14) = 15

Vì \(m\ge n\) nên 15 = 5.3 = 15.1

-Với m = 5 ; n = 3 thì a = 70 ; b = 42

-Với m = 15 ; n = 1 thì a = 210 ; b =1

1 tháng 12 2016

Ta co:UCLN(a,b)=a.b÷BCNN(a,b)                            suy ra:UCLN(a,b)=2940÷210=14                            suy ra:a chia het cho 14;b chia het cho 14            suy ra:a=14k,b=14h voi k,h la nguyen to cung      nhau                                                                            suy ra:a.b=14k.14h                                                   hay:2940=196k.h                                                      suy ra:k.h=2940÷196=15,vi k,h nguyen to cung nhau nen ta co bang sau                                           k          h              a                 b                                   1         15           14              210                               15         1            210             14                                   3          5             42              70                                  5           3             70               42

20 tháng 8 2019

Bài 1:

Ta có ab=ƯCLN (a,b). BCNN (a,b)

=>ƯCLN (a,b)=ab:BCNN (a,b)

=>ƯCLN (a,b)=2940:210=14

Ta có: a=14. a' và b=14.b'

Ta có: a.b=2940

Thay số vào, ta có: a.b=14.a'.14.b'=(14.14).a'.b'=2940

=>a'.b'=2940:(14.14)=15 và ƯCLN (a',b')=1

Ta có:

a'13515
b'15531

=>

a144270210
b210704214

Vậy các cặp số a,b cần tìm là:14 và 210;42 và 70;70 và 42;210 và 14.

2 bài còn lại làm tương tự !

27 tháng 2 2023

\(\dfrac{7}{2}\) < a < \(\dfrac{14}{3}\)

\(\dfrac{7\times3}{2\times3}\) < a < \(\dfrac{14\times2}{3\times2}\)

\(\dfrac{21}{6}\) <  \(\dfrac{6\times a}{6}\)  < \(\dfrac{28}{6}\)

21 < 6x a < 28

vì 21 < 22 < 23 < 24 < 25 < 26 < 27 < 28

   6 x a = 22; 23; 24; 25; 26; 27

a = 11/3; 23/6; 4; 25/6; 13/3; 27/6

vì a là số tự nhiên nên a = 4 

24 tháng 11 2021

\(a=0;1;2;3\) ở câu a

\(a=0;1;2;3;4;5;6;7\) ở câu b

\(a=0;1;2;3;4;5;6\) ở câu c

24 tháng 11 2021

a) a = 3

b) b = 8

c) x = 1

d) ab = 23

11 tháng 9 2021

a. tìm a là số tự nhiên để 17a+8 là số chính phương

Giả sử \(17a+8=x^2\Rightarrow17a-17+25=x^2\Rightarrow17\left(a-1\right)=x^2-25\Rightarrow17\left(a-1\right)=\left(x-5\right)\left(x+5\right)\)

\(\Rightarrow\left(x-5\right);\left(x+5\right)⋮17\)

\(\Rightarrow x=17n\pm5\Rightarrow a=17n^2\pm10n+1\)

28 tháng 3 2021

Ta có: 1+2+3+...+bc=abc (0 < a ≤9 và 0≤b,c ≤9)

<=> ab ( \(ab\) +1)2 = abc

<=> bc ( bc+1)=2. abc

<=> bc.bc+bc=2(100a+bc)

<=> bc.bc+bc=200a+2bc

<=> bc(bc-1)=200a

Nhận xét: Vế phải là 200a => Số tận cùng là 0.

Vậy vế trái bc.(bc-1) cũng phải có tận cùng là 0 và phải chia hết cho 100.

Có các trường hợp: c = 0, c = 1, c = 5 và c = 6.

Xét từng trường hợp, có: +/ TH1: Với c=0 => b0(b0-1)=200a

<=> 10b(10b-1)=200a <=> b(10b-1)=20a. Không có giá trị của b thỏa mãn để: b(10b-1)⋮10 => Loại

+Trường hợp 2: Với c=1 => b1(b1-1)=200a

<=> (10b+1).10b=200a <=> b(10b+1)=20a. Không có giá trị của b thỏa mãn để: b(10b+1)⋮10 => Loại

+/ Trường hợp 3: Với c=5 => b5(b5-1)=200a <=> b4.b5=200a

Nhận thấy: b4 và b5 là 2 số tự nhiên liên tiếp. Để tích của chúng có 2 chữ số tận cùng là 0.

Ta chọn được duy nhất b=2 (Do 24.25=600) => 24.25=200a => a=3 (nhận)

+/ Trường hợp4: Với c=6 => b6.b5=200a

Nhận thấy: b5 và b6 là 2 số tự nhiên liên tiếp. Để tích của chúng có 2 chữ số tận cùng là 0.

Ta chọn được duy nhất b=7 (Do 75.76=5700) <=> 75.76=200a => a=28,5 (Loại)

Vậy cặp số duy nhất thỏa mãn là: a=3, b=2, c=5 Vậy \(\overline{abc}\) = 325.

28 tháng 3 2021

TTTTTTTTTTTTTTHHHHHHHHHHHHHAAAAAAAAAAAAAANNNNNNNNKKKKKKKKKKKKKKSSSSSSSSSSSSSSS HỒ ĐỨC VIỆT