Tìm các cặp số tự nhiên (a;b) thỏa mãn \(1000a^2+b=1001b^2+a\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.goi ...a+b va a*b
a+b=a*b
ad+bc=ac
bc=ac-ad
bc=a(c-d)
........
a=c,b=c-d
2.2*a+b+2+a*b=9
a.(2-b)+(b+2).1=9
d 10^n+72^n -1
=10^n -1+72n
=(10-1) [10^(n-1)+10^(n-2)+ .....................+10+1]+72n
=9[10^(n-1)+10^(n-2)+..........................-9n+81n
Ta có : ab+a+b=5
a(b+1)+b=5
a(b+1)+(b+1)=5+1
(a+1)(b+1)=6
Vì (a+1)(b+1)=6 nên a+1 và b+1 là ước của 6
Mà Ư(6)={1;2;3;6}
Ta có bảng giá trị
a+1 | 1 | 2 | 3 | 6 |
a | 0 | 1 | 2 | 5 |
b+1 | 6 | 3 | 2 | 1 |
b | 5 | 2 | 1 | 0 |
Vậy ta có các cặp số tự nhiên(a,b) là: (0,5);(1,2);(2,1);(5,0)
Trước hết chúng ta cần biết tính chất sau:
Cho 4 số tự nhiên \(x;y;z;t>1\) trong đó x, y nguyên tố cùng nhau, z, t nguyên tố cùng nhau thì \(\left[{}\begin{matrix}x=z;y=t\\x=t;y=z\end{matrix}\right.\)
- Nếu \(a=0\Rightarrow b\left(1001b-1\right)=0\Rightarrow b=0\)
Nếu \(b=0\Rightarrow a\left(1000a-1\right)=0\Rightarrow a=0\)
- Nếu \(a=1\Rightarrow1001b^2-b-999=0\Rightarrow\) ko có \(b\in N\) thỏa mãn
Nếu \(b=1\Rightarrow1000a^2-a-1000=0\Rightarrow\) ko có \(a\in N\) thỏa mãn
- Nếu \(a;b>1\):
\(1000a^2-a=1001b^2-b\Leftrightarrow a\left(1000a-1\right)=b\left(1001b-1\right)\)
Dễ dàng chứng minh \(a\) và \(1000a-1\) nguyên tố cùng nhau; \(b\) và \(1001b-1\) nguyên tố cùng nhau
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a=b\\1000a-1=1001b-1\end{matrix}\right.\\\left\{{}\begin{matrix}a=1001b-1\\1000a-1=b\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a=b\\1000a=1001b\end{matrix}\right.\\\left\{{}\begin{matrix}a=1001b-1\\1000\left(1001b-1\right)=b\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}1000b=1001b\\1000000b=1000\end{matrix}\right.\) \(\Rightarrow\) ko có \(a;b>1\) thỏa mãn
Vậy cặp số tự nhiên duy nhất thỏa mãn điều kiện là \(a=b=0\)
Viết thiếu đoạn trên, nếu \(x,y,z,t>1\) trong đó x, y nguyên tố cùng nhau, z, t nguyên tố cùng nhau và \(x.y=z.t\Rightarrow\left[{}\begin{matrix}x=z;y=t\\x=t,y=z\end{matrix}\right.\)