K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2021

a) Xét ΔABC vuông tại A ta có:
\(BC^2=AB^2+AC^2\)
\(BC^2=6^2+8^2\)
=> BC = 10 (cm)
Xét ΔABC ta có:
BD là đường p/g (gt)
=> \(\dfrac{AD}{DC}=\dfrac{AB}{BC}\) (t/c đường p/g)
=> \(\dfrac{AD}{DC}=\dfrac{6}{10}=\dfrac{3}{5}\)
=> \(\dfrac{AD}{3}=\dfrac{DC}{5}\)
Áp dụng DTSBN ta có:
\(\dfrac{AD}{3}=\dfrac{DC}{5}=\dfrac{AD+DC}{3+5}=\dfrac{AC}{8}=\dfrac{8}{8}=1\)
=> \(\left\{{}\begin{matrix}\dfrac{AD}{3}=1\Rightarrow AD=3\\\dfrac{DC}{5}=1\Rightarrow DC=5\end{matrix}\right.\)
b) ΔABH và ΔCBA (bạn tự xét nhé) theo trường hợp g-g
=> \(\widehat{BAH}=\widehat{BCA}\) (2 góc tương ứng)
Xét ΔABI và ΔCBD ta có:
\(\widehat{ABI}=\widehat{DBC}\) (BD là đường p/g)
\(\widehat{BAI}=\widehat{BCD}\) (cmt)
=> ΔABI ~ ΔCBD (g-g)
c) Xét ΔABH ta có: 
BI là đường p/g (gt)
=> \(\dfrac{IH}{IA}=\dfrac{BH}{AB}\) (t/c đường p/g)
Ta có: \(\dfrac{AD}{DC}=\dfrac{AB}{BC}\) (cm a)
           \(\dfrac{AB}{BC}=\dfrac{BH}{AB}\) (ΔABH ~ ΔCBA)
=> đpcm

24 tháng 3 2021

\(BC=BH+HC=2+8=10\left(cm\right)\)

△ABC vuông tại A có \(BC^2=AB^2+AC^2\\ \Rightarrow AB^2=BC^2-AC^2=10^2-6^2=64\\ \Rightarrow AB=8\left(cm\right)\)

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

Do đó: ΔABC\(\sim\)ΔHBA

b: ta có: ΔABC\(\sim\)ΔHBA

nên BA/BH=BC/BA

hay \(BA^2=BH\cdot BC\)

10 tháng 5 2022

a.Xét tam giác ABC và tam giác HBA, có:

^B: chung

^BAC = ^BHA = 90 độ

Vậy tam giác ABC đồng dạng tam giác HBA (g.g)

b.\(\rightarrow\dfrac{AB}{HB}=\dfrac{BC}{AB}\)

\(\Leftrightarrow AB^2=BH.BC\left(đfcm\right)\) (1)

c.Áp dụng định lý pitago \(\Rightarrow BC=\sqrt{6^2+10^2}=2\sqrt{34}\left(cm\right)\)

(1) \(\Leftrightarrow6^2=2\sqrt{34}BH\)

\(\Leftrightarrow BH=\dfrac{9\sqrt{34}}{17}\left(cm\right)\)

Áp dụng định lý pitago trong tam giác ABH \(\Rightarrow AH=\sqrt{6^2-\left(\dfrac{9\sqrt{34}}{17}\right)^2}=\dfrac{15\sqrt{34}}{17}\left(cm\right)\)

14 tháng 2 2022

bạn đăng từng bài nhé

Bài 3:

\(AB=\sqrt{AH^2+BH^2}=\sqrt{6^2+4^2}=2\sqrt{13}\left(cm\right)\)

BC=13cm

=>\(AC=3\sqrt{13}\left(cm\right)\)

21 tháng 4 2021

giúp mình câu d thui mn ơi :333, mình cám ơn mn ạ

 

a) Xét ΔABC vuông tại A và ΔHAC vuông tại H có 

\(\widehat{C}\) chung

Do đó: ΔABC\(\sim\)ΔHAC(g-g)

24 tháng 3 2021

Anh bổ sung là : AH vuông góc với BC nhé 

\(BC=HB+HC=2+8=10\left(cm\right)\)

\(\text{Áp dụng định lý Pytago trong tam giác ABC vuông tại A:}\)

\(BC^2=AB^2+AC^2\)

\(\Rightarrow AB=\sqrt{BC^2-AC^2}=\sqrt{10^2-6^2}=8\left(cm\right)\)

Bổ sung đề \(AH\) là đường cao.

Áp dụng hệ thức lượng vào tam giác vuông \(ABC\) và đường cao \(AH\) ta có :

\(AB^2=BC.BH\)

\(\Rightarrow AB=\sqrt{BC.BH}=\sqrt{\left(8+2\right).2}=\sqrt{20}=2\sqrt{5}\)\((cm)\)

Xét ΔABC vuông tại A có 

\(AB^2+AC^2=BC^2\)

hay AC=8(cm)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=4,8\left(cm\right)\\BH=3,6\left(cm\right)\\CH=6,4\left(cm\right)\end{matrix}\right.\)

21 tháng 7 2017

Chọn A.

a: Xét ΔMBA và ΔMCE có

MB=MC

góc BMA=góc CME

MA=ME

=>ΔMBA=ΔMCE
b: ΔMBA=ΔMCE

=>góc MBA=góc MCE

=>AB//CE
c: AB<AC<CB

=>góc C<góc B<góc A