Cho a,b,c là các số thực dương thỏa mãn \(a>b;a+b+c=4\)
Tìm GTNN của \(P=4a+3b+\frac{c^3}{\left(a-b\right)b}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt \(A=\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\)
\(=>A^2=\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\)
\(=>A^2\le\left[\left(\sqrt{a+b}\right)^2+\left(\sqrt{b+c}\right)^2+\left(\sqrt{c+a}\right)^2\right].3\)
\(=>A^2\le\left[2\left(a+b+c\right)\right]3=2.3=6\)
\(=>A\le\sqrt{6}\left(dpcm\right)\)
dấu"=" xảy ra<=>a=b=c=1/3
Ta có:\(\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2=\left(1.\sqrt{a+b}+1.\sqrt{b+c}+1.\sqrt{c+a}\right)^2\)
\(\le\left(1+1+1\right)\left(a+b+b+c+c+a\right)=3.2=6\)
\(\Rightarrow\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\le\sqrt{6}\)
Dấu "=" xảy ra <=> a=b=c=1/3
a-b+b-x-a+c/x+y-z=0/x+y-z=0
suy ra a-b=0 suy ra a=b
b-c=0 suy ra b=c
Với a;b;c dương:
\(\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)
\(=\left(a+b+c\right)\left(ab+bc+ca\right)-\sqrt[3]{abc}.\sqrt[3]{ab.bc.ca}\)
\(\ge\left(a+b+c\right)\left(ab+bc+ca\right)-\dfrac{1}{3}\left(a+b+c\right).\dfrac{1}{3}\left(ab+bc+ca\right)\)
\(=\dfrac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\)
Đặt vế trái BĐT là P, ta có:
\(\dfrac{ab}{1-c^2}=\dfrac{ab}{\left(1-c\right)\left(1+c\right)}=\dfrac{ab}{\left(a+b\right)\left(a+c+b+c\right)}=\dfrac{ab}{\sqrt{a+b}.\sqrt{a+b}\left(a+c+b+c\right)}\)
\(\le\dfrac{ab}{\sqrt[]{2\sqrt[]{ab}}.\sqrt[]{a+b}.2\sqrt[]{\left(a+c\right)\left(b+c\right)}}=\dfrac{\sqrt[4]{\left(ab\right)^3}}{2\sqrt[]{2}.\sqrt[]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)
Tương tự:
\(\dfrac{bc}{1-a^2}\le\dfrac{\sqrt[4]{\left(bc\right)^3}}{2\sqrt[]{2}.\sqrt[]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)
\(\dfrac{ca}{1-b^2}\le\dfrac{\sqrt[4]{\left(ca\right)^3}}{2\sqrt[]{2}.\sqrt[]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)
Cộng vế:
\(P\le\dfrac{\sqrt[4]{\left(ab\right)^3}+\sqrt[4]{\left(bc\right)^3}+\sqrt[4]{\left(ca\right)^3}}{2\sqrt[]{2}.\sqrt[]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)
Nên ta chỉ cần chứng minh:
\(\sqrt[4]{\left(ab\right)^3}+\sqrt[4]{\left(bc\right)^3}+\sqrt[4]{\left(ca\right)^3}\le\dfrac{3}{2\sqrt[]{2}}\sqrt[]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
\(\Leftrightarrow\left(\sqrt[4]{\left(ab\right)^3}+\sqrt[4]{\left(bc\right)^3}+\sqrt[4]{\left(ca\right)^3}\right)^2\le\dfrac{9}{8}\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Mà \(\dfrac{9}{8}\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\left(a+b+c\right)\left(ab+bc+ca\right)\)
Nên ta chỉ cần chứng minh:
\(\left(\sqrt[4]{\left(ab\right)^3}+\sqrt[4]{\left(bc\right)^3}+\sqrt[4]{\left(ca\right)^3}\right)^2\le\left(a+b+c\right)\left(ab+bc+ca\right)\)
Thật vậy:
\(\left(\sqrt[4]{ab}.\sqrt[]{ab}+\sqrt[4]{bc}.\sqrt[]{bc}+\sqrt[4]{ca}.\sqrt[]{ca}\right)^2\le\left(\sqrt[]{ab}+\sqrt[]{bc}+\sqrt[]{ca}\right)\left(ab+bc+ca\right)\)
\(\le\left(a+b+c\right)\left(ab+bc+ca\right)\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=1\)
Giả sử a<0,vì abc>0 nên bc<0.Mặt khác thì ab+ac+bc>0<=>a(b+c)>-bc>0=>a(b+c)>0,mà a<0 nên b+c<0=>a+b+c<0(vô lý).Vậy điều giả sử trên là sai,
a,b,c là 3 số dương.
Giả sử a<0,vì abc>0 nên bc<0.Mặt khác thì ab+ac+bc>0<=>a(b+c)>-bc>0=>a(b+c)>0,mà a<0 nên b+c<0=>a+b+c<0(vô lý).
Vậy điều giả sử trên là sai,
Do đó a,b,c là 3 số dương.
\(P=4a+3b+\frac{c^3}{\left(a-b\right)b}\)
\(=\left[\left(a-b\right)+b+\frac{c^3}{\left(a-b\right)b}\right]+3b+3a\)
\(\ge3c+3b+3a=3\left(a+b+c\right)=12\)
Dấu "=" xảy ra tại \(a=2;b=1;c=1\)