Tìm các số a,b,c không âm thỏa mãn đồng thời ba điều kiện a+3c=2014;a+2b=2015; tổng (a+b+c) đạt giá trị lớn nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=\(\frac{1.2.3...30.31}{2\left(2.3.4...31\right).64}=\frac{1}{128}\)
1 do (x-1)4 là số tự nhiên,(y+1)^4 là số tự nhiên
nên để tổng bằng 0 thì cả (x-1)4 và (y+1)^4cùng bằng 0
nên x=0,y=-1
thay x,y vào rồi tính C
ta có:\(A=\left|x+1\right|+\left|x+2\right|+...+\left|x+9\right|=14x\left(1\right)\)
do \(\left|x+1\right|\ge0,\left|x+2\right|\ge0,....,\left|x+9\right|\ge0\)
\(\Rightarrow14x>0\)\(\Rightarrow x>0\)
khi đó (1) trở thành:x+1+x+2+x+3+...+x+9=14x
\(\Rightarrow9x+45=14x\)
\(\Rightarrow45=5x\)
\(\Rightarrow x=9\)
a+3c +a+2b = 17
=>2a +2b +3c = 17
=>2.(a+b)+3c=17
=>a+b+3c/2=17/2
=> N= a+b-c-17/2=a+b-c-a-b -3c/2=-c-3c/2
=> N là các số không âm
Từ điều kiện 91≤a≤93 và a ∈ ¥ ta suy ra: a ∈ {91;92;93}
Từ điều kiện 91<c<94 và c ∈ ¥ ta suy ra: c ∈ {92;93}
Mặt khác, a<b<c (b là số tự nhiên) nên a = 91; b = 92; c = 93
I'm gone!
Áp dụng bất đẳng thức AM - GM lần lượt cho ba số dương \(a,b,c\) và ba phân thức \(\frac{1}{a},\frac{1}{b},\frac{1}{c}\) không âm, ta có:
\(a+b+c\ge3\sqrt[3]{abc}\) \(\left(1\right)\)
và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}=\frac{3}{\sqrt[3]{abc}}\) \(\left(2\right)\)
Nhân từng vế \(\left(1\right)\) với \(\left(2\right)\), ta được: \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}.\frac{3}{\sqrt[3]{abc}}=9\)
Vậy, giá trị nhỏ nhất của biểu thức \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\) là \(9\).
Dấu \("="\) xảy ra \(\Leftrightarrow\) \(a=b=c=\frac{1007}{3}\) (bạn cần trình bày rõ kết quả này để ghi điểm tối đa: kết hợp với gt)
I'm gone!
Áp dụng bất đẳng thức AM - GM từng lượt cho ba số dương \(a,b,c\) và ba phân thức \(\frac{1}{a},\frac{1}{b},\frac{1}{c}\) không âm, ta có:
\(a+b+c\ge3\sqrt[3]{abc}\) \(\left(1\right)\)
và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}=\frac{3}{\sqrt[3]{abc}}\) \(\left(2\right)\)
Nhân từng vế \(\left(1\right)\) với \(\left(2\right)\), ta được: \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}.\frac{3}{\sqrt[3]{abc}}=9\)
Vậy, giá trị nhỏ nhất của biểu thức \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\) là \(9\).
Dấu \("="\) xảy ra \(\Leftrightarrow\) \(a=b=c=\frac{1007}{3}\) (bạn cần trình bày rõ kết quả này để ghi điểm tối đa: kết hợp với gt)