Cho số phức z = a+bi; a,bϵR; a>0 thỏa mãn z - 1 + z - 2 = a = b Tính z 1 + z -
A. 3 2
B. 10
C. 5
D. 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn C.
Ta có: z 2 = ( a + bi ) 2 = a 2 - b 2 + 2 abi . Để z 2 là số thuần ảo thì a 2 - b 2 = 0 ⇔ a = ± b .
\(\left(1+2i\right)z-5=3i\Leftrightarrow\left(1+2i\right)z=5+3i\)
\(\Rightarrow z=\dfrac{5+3i}{1+2i}=\dfrac{11}{5}-\dfrac{7}{5}i\)
\(\Rightarrow\overline{z}=\dfrac{11}{5}+\dfrac{7}{5}i\)
2.
Đề câu này là: \(3z-5\overline{z}-6+10i=0\) đúng không nhỉ?
Đáp án A.
Có z . z ' = a a ' − b b ' + a b ' + a ' b i .
Vậy phần ảo là: a b ' + b a ' i .
Chọn đáp án B.