K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2015

Xét bài toán phụ . Cho ( O ) , I ở ngoài ( O ) Kẻ tiếp tuyến IA ( A là tiếp điểm ) , kẻ cát tuyến IDC ( ID < IE ). CMR tam giác IDA đồng dạng tam giác IAE

 Hạ OK vuông góc DE => DK = EK

Ta có : ID.IE =( IK-DK)(IK +EK)=\(IK^2-DK^2=OI^2-OK^2-DK^2=OI^2-OD^2=IA^2\)

=> \(\frac{ID}{IA}=\frac{IA}{IE}\)góc I chung => tam giác IDA đồng dạng IAE

Áp dụng giải bài toán này => AMC đồng dạng ACN => \(\frac{MC}{AC}=\frac{NC}{AN}=>MC.AN=AC.NC\)

Tam giác CMN vuông tại C => \(MH.MN=CM^2=>MH=\frac{CM^2}{MN}\)

=> \(MH.AN=\frac{CM^2}{MN}.AN=\frac{AC.CN.CM}{MN}\)

TT \(MA.NH=\frac{MC.AC.NC}{MN}\)

=> MH.NA=MA.NH ( đpcm )

 PS Được dùng kiến thức HK 2 sẽ không phải áp dụng bài toán phụ .

  Không tich hơi phí

17 tháng 12 2021

a: Xét tứ giác OBAC có

\(\widehat{OBA}+\widehat{OCA}=180^0\)

Do đó: OBAC là tứ giác nội tiếp

a: Xét tứ giác OBAC có 

\(\widehat{OBA}+\widehat{OCA}=180^0\)

Do đó: OBAC là tứ giác nội tiếp

hay O,B,A,C cùng thuộc 1 đường tròn

a: Xét (O) có 

AB là tiếp tuyến 

AC là tiếp tuyến

Do đó: AB=AC
hay A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

nên O nằm trên đường trung trực của BC(2)

Ta có: HB=HC

nên H nằm trên đường trung trực của BC(3)

Từ (1), (2) và (3) suy ra A,H,O thẳng hàng

6 tháng 11 2021

giúp mình nốt phần còn lại với

 

8 tháng 12 2015

Kéo dài CD cắt AB tại F

Góc BCD = 90 độ => góc BCF = 90 độ  => Tam giác BCF vuông tại C  (1)

 AB = AC ( t/c 2 tiếp tuyến cắt nhau )  (2)

Từ (1) và (2) => AC=AB=AF=\(\frac{FB}{2}\)(*)

Ta lét vào tam giác DFB có CK // BF ( cùng vuông góc với BD ) => \(\frac{CI}{AF}=\frac{DI}{AD}=\frac{IK}{AB}\)(**)

Từ (1*) và (2*) => CI = CK ( đpcm )

 PS : câu d giống y đúc câu a bài hình đề thi HSG huyện thanh oai năm 2015-2016 

 

8 tháng 12 2015

ảnh đại diện của bạn ấn tượng đấy