Cho (O), từ điểm A nằm ngoài (O), kẻ tiếp tuyến AB, AC với đường tròn ( B,C là tiếp điểm). Gọi H là trung điểm BC.
a) CM : A,H,O thẳng hàng.
b) kẻ đường kính BD;VẼ CK vuông góc BD. CM:AC.CD= CK.AO
c)Tia AO cắt (O) tại M và N. CM: MH.NA=MA.NH
d) AD cắt CK tại I. CM: CI=IK
Xét bài toán phụ . Cho ( O ) , I ở ngoài ( O ) Kẻ tiếp tuyến IA ( A là tiếp điểm ) , kẻ cát tuyến IDC ( ID < IE ). CMR tam giác IDA đồng dạng tam giác IAE
Hạ OK vuông góc DE => DK = EK
Ta có : ID.IE =( IK-DK)(IK +EK)=\(IK^2-DK^2=OI^2-OK^2-DK^2=OI^2-OD^2=IA^2\)
=> \(\frac{ID}{IA}=\frac{IA}{IE}\)góc I chung => tam giác IDA đồng dạng IAE
Áp dụng giải bài toán này => AMC đồng dạng ACN => \(\frac{MC}{AC}=\frac{NC}{AN}=>MC.AN=AC.NC\)
Tam giác CMN vuông tại C => \(MH.MN=CM^2=>MH=\frac{CM^2}{MN}\)
=> \(MH.AN=\frac{CM^2}{MN}.AN=\frac{AC.CN.CM}{MN}\)
TT \(MA.NH=\frac{MC.AC.NC}{MN}\)
=> MH.NA=MA.NH ( đpcm )
PS Được dùng kiến thức HK 2 sẽ không phải áp dụng bài toán phụ .
Không tich hơi phí