Câu 6:
Cho AB là một đường kính của đường tròn (O;R = 2cm), vẽ dây AC = 2,4cm,
tia BC cắt tiếp tuyến tại A của (O) ở M . Độ dài đoạn AM = cm
Hộ mk cái nhé!! ai làm nhanh sẽ dc tick liền
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
có cách này nè:
vẽ nữa (O) kia. vẽ đường kính COK.gọi giao điểm của EM vs CK là F. ta có: tam giác CEK nội tiếp (O), có CK là đường kính => tam giác CEK vuông tại E, có đường cao EF => = CF.CK(1)
ta có: tam giác CMF Đồng dạng với tam giác COH(g.g) => CM/ OC = CF/CH \(\Rightarrow\)CH/CK = CF/CH \(\Rightarrow\)CH2 = CK.CF (2) => từ (1);(2)=> CE=CH. mà ta dễ dàng c/m được CE=CD. vậy CH = CD, nên H thuộc (O;CD). mà CH vuông góc với AB. => dpcm
Ta có góc ABC = 90 (dây AB chắn nửa đường tròn) nên AC vuông góc BM
Trong tam giác ABM có góc A=90, AC vuông góc BM
\(\Rightarrow\frac{1}{AC^2}=\frac{1}{AM^2}+\frac{1}{AB^2}\)\(\Rightarrow\frac{1}{AM^2}=\frac{1}{2,4^2}-\frac{1}{4^2}\Rightarrow AM=3\)
Dễ chứng minh tam giác ABC vuông tại C.
Áp dụng hệ thức lượng trong tam giác vuông, ta có :
\(\frac{1}{AM^2}+\frac{1}{AB^2}=\frac{1}{AC^2}\)
\(\Rightarrow\frac{1}{AM^2}+\frac{1}{\left(2R\right)^2}=\frac{1}{2.4^2}\)
Giải pt trên tìm được AM=3cm