cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O;R). hai đường cao BE, CF cắt nhau tại H
a. cm. tứ giác BFEC nội tiếp
b.hai đường thẳng BE, CF cắt (O) lần lượt tại P và Q. cm ˆBPQ=ˆBCQ
c.cm EF//QP
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Có \(\widehat{BFC}=\widehat{CKB}=90^0\)
=> Tứ giác BCFK nội tiếp
b)Có \(\widehat{BCK}=\widehat{BFK}\)( vì tứ giác BCFK nội tiếp )
mà \(\widehat{BCE}=\widehat{BDE}=\dfrac{1}{2}sđ\stackrel\frown{EB}\)
=> \(\widehat{BFK}=\widehat{BDE}\) mà hai góc nằm ở vị trí hai góc đồng vị
=> KF//DE
\(a,\widehat{ACM}=90^0\) (góc nt chắn nửa đg tròn)
\(b,\widehat{BAH}+\widehat{ABH}=90^0;\widehat{OAC}+\widehat{AMC}=90^0\left(\widehat{ACM}=90^0\right)\)
Mà \(\widehat{ABH}=\widehat{AMC}\left(=\dfrac{1}{2}sđ\stackrel\frown{AC}\right)\)
Do đó \(\widehat{BAH}=\widehat{OAC}\)
a: Xét tứ giác AEHF có
góc AEH+góc AFH=180 độ
=>AEHF là tứ giác nội tiếp
Xét tứ giác BFEC có
góc BFC=góc BEC=90 độ
=>BFEC là tứ giác nội tiếp
b: Xét (O) có
ΔABK nội tiếp
AK là đường kính
=>ΔABK vuông tại B
=>BK//CH
Xét (O) có
ΔACK nội tiếp
AK là đường kính
=>ΔACK vuông tại C
=>CK//BH
Xét tứ giác BHCK có
BH//CK
BK//CH
=>BHCK là hình bình hành
=>BC cắt HK tại trung điểm của mỗi đường
=>I là trung điểm của BC
Xét tứ giác BFEC có BFC=BEC =90
mà 2 góc này cùng nhìn cạnh BC nên tứ giác BFCE nội tiếp
b) Ta thấy \(\widehat{BCQ}=\frac{1}{2}\widebat{QB}\\ \widehat{QPB}=\frac{1}{2}\widebat{QB}\\ \Rightarrow\widehat{BCQ}=\widehat{QPB}\)
C) Tứ giác BFEC nội tiếp\(\Rightarrow\widehat{FEB}=\widehat{FCB}\)(cùng nhìn cạnh BF)
\(\Rightarrow\widehat{BÈF}=\widehat{BPQ}\)
MÀ 2 góc ở vị trí đồng vị nên FE//QP