K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
17 tháng 12 2020

Lời giải:

Giả sử các điểm có vị trí như hình vẽ. Trong đó: 

K là tâm đường tròn nội tiếp tam giác AMN

\(KL\perp AM; IU\perp AB (L\in AM; U\in AB)\)

Ký hiệu \(p_i\) là nửa chu vi tam giác \(i\)

\(A,K,I\) thẳng hàng vì cùng nằm trên đường phân giác trong góc A.

Dễ thấy:

\(\triangle AMN\sim \triangle ABC(g.g)\)\(\Rightarrow \frac{p_{AMN}}{p_{ABC}}=\frac{AM}{AB}\)

\(\triangle AMK\sim \triangle ABI(g.g)\)

\(\Rightarrow \frac{AM}{AB}=\frac{AK}{AI}\)

Mà \(LK\parallel IU \) nên theo Talet thì \(\frac{AK}{AI}=\frac{LK}{IU}=\frac{R_1}{R}\)

Do đó: \(\frac{p_{AMN}}{p_{ABC}}=\frac{R_1}{R}\)

Hoàn toàn tương tự ta có: \(\frac{p_{CPQ}}{p_{ABC}}=\frac{R_2}{R}; \frac{p_{BED}}{p_{ABC}}=\frac{R_3}{R}\). Do đó:

\(\frac{R_1+R_2+R_3}{R}=\frac{p_{AMN}+p_{CPQ}+p_{BED}}{p_{ABC}}=\frac{AM+AN+MN+BE+BD+ED+CP+CQ+PQ}{AB+AC+BC}\)

\(=\frac{(AM+AN+CP+CQ+BE+BD)+(MN+DE+PQ)}{(AM+AN+CP+CQ+BE+BD)+(ME+NP+DQ)}=1\)

(do \(MN+DE+PQ=ME+NP+DQ\) do tính chất các tiếp tuyến cắt nhau)

\(\Rightarrow R_1+R_2+R_3=R\) 

Ta có đpcm.

 

AH
Akai Haruma
Giáo viên
17 tháng 12 2020

Hình vẽ:

undefined

Tâm là trung điểm của BC

R=BC/2=6,5(cm)

a: ΔBAC vuông tại B có góc A=45 độ

nên ΔBAC vuông cân tại B

=>BA=BC=2a

AC=căn AB^2+BC^2=2a*căn 2

b: BH=BA*BC/AC=4a^2/2*a*căn 2=a*căn 2

c: S ABC=1/2*2a*2a=2a^2

d: C=2a+2a+2a*căn 2=4a+2a*căn 2