K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2021

a; Xét tam giác ABC nội tiếp (O,R) có AH,BK là 2đường cao => góc AHB=góc BKA=90.

Vì K và H là 2 đỉnh liên tiếp của tứ giác ABHK 

=> tứ giác ABHK nội tiếp

b,Xét đường tròn (O,R) có góc ACB là góc nội tiếp chắn cung AB 

LẠi có góc AOB là góc ở tâm chắn cung AB 

=>sđ góc AOB=2 sđ góc ACB=2x70=140 độ

=> S quạt OAB=\(\pi\).R^2.n/360=\(\pi\).25.140/360=\(\pi\).175/18 cm2

c,

 

 

2 tháng 5 2021

c, xét tam giác ABC nội tiếp (O,R) có góc BED là góc nội tiếp chắn cung BD

Lại có tứ giác ABHK nội tiếp (cmt) nên góc BKH= góc BAH (cùng chắn cung BH)

Có góc BAD là góc nội tiếp chắn cung BD=> góc BAD=góc BED(cùng chắn cung BD)

=> góc BED=góc BKH mà 2 góc này ở vị trí đồng vị => HK song song DE

 

9 tháng 5 2021

giúp mình câu b với các bạn ơi

 

7 tháng 6 2021

a) Có \(\widehat{BFC}=\widehat{CKB}=90^0\)

=> Tứ giác BCFK nội tiếp

b)Có \(\widehat{BCK}=\widehat{BFK}\)( vì tứ giác BCFK nội tiếp )

mà \(\widehat{BCE}=\widehat{BDE}=\dfrac{1}{2}sđ\stackrel\frown{EB}\)

=> \(\widehat{BFK}=\widehat{BDE}\) mà hai góc nằm ở vị trí hai góc đồng vị

=> KF//DE

13 tháng 12 2021

\(a,\widehat{ACM}=90^0\) (góc nt chắn nửa đg tròn)

\(b,\widehat{BAH}+\widehat{ABH}=90^0;\widehat{OAC}+\widehat{AMC}=90^0\left(\widehat{ACM}=90^0\right)\)

Mà \(\widehat{ABH}=\widehat{AMC}\left(=\dfrac{1}{2}sđ\stackrel\frown{AC}\right)\)

Do đó \(\widehat{BAH}=\widehat{OAC}\)