Cho đường tròn (O;R) và dây cung BC sao cho góc BOC = 90 độ. Tiếp tuyến với đường tròn tại B và C cắt nhau ở A. Trên cung nhỏ BC lấy điểm I, qua I vẽ tiếp tuyến với đường tròn cắt AB, AC lần lượt tại M và N.
a) Chứng minh tứ giác ABOC là hình vuông
b) OM, ON cắt BC lần lượt tại H và K. Chứng minh tứ giác OHNC nội tiếp
a: Xét (O) có
AB,AC là tiếp tuyến
=>AB=AC và góc OBA=góc OCA=90 đọ
Xét tứ giác ABOC có
góc OBA=góc OCA=góc BOC=90 độ
AB=AC
=>ABOC là hìh vuông
b: Xét (O) có
MB,MI là tiếp tuyến
=>MB=MI và góc IOM=góc BOM=1/2*góc IOB
Xét (O) có
NC,NI là tiếp tuyến
=>NC=NI và góc ION=góc CON=1/2*góc IOC
mà góc MON=1/2*góc BOC=45 độ
nên góc HON=45 độ
góc BOC=90 độ
=>sđ cung BC=90 độ
=>góc NCM=1/2*sđ cung BC=45 độ
=>góc NCH=45 độ
Vì góc NCH=góc NOH
nên OHNC nội tiếp