Cho đường tròn (O;R) dường kính AB . Vẽ 2 tiếp tuyến Ax và By của đường tròn . Gọi M là 1 điểm tùy ý trên cung AB . Tiếp tuyến tại M của đường tròn Ax và By theo thứ tự C,D
a, CM : AD.BD=R2
b, Tìm vị trí của M để chu vi \(\Delta\) OCD nhỏ nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Vì DC, Ax, By là các tiếp của tiếp của đường tròn và cắt nhau tại các điểm tương ứng trên hình vẽ nên ta có
\(\hept{\begin{cases}AC=CM\\BD=MD\end{cases}}\) . Dễ dàng chứng minh góc COD = 90 độ
Áp dụng hệ thức về cạnh trong tam giác vuông , ta có \(MC.MD=OM^2\) hay \(AC.BD=R^2\)
b/ Ta có \(C_{OCD}=OC+OD+CD\) . Để chu vi tam giác OCD nhỏ nhất thì CD nhỏ nhất
Mà CM.MD = R2 không đổi nên CM+MD = CD đạt giá trị nhỏ nhất khi CM = MD
Khi đó M là điểm nằm giữa cung AB trên mặt phẳng chứa C và D.