Cho đường tròn (O;R) dây BC cố định. Điểm A di động trên cung lớn AB (A khác B khác C). Tia phân giác của góc ACB cắt (o) tại D khác C. Lấy I thuộc đoạn CD sao cho ĐI=ĐB. BỊ cắt (o) tại K khác B
a) CMR: Tam giác KAC cân
b) CMR: AI luôn đi qua điểm cố định. Từ đó xác định vị trí điểm A sao cho AI lớn nhất
c) Trên tia đối của tia AB lấy điểm M sao cho AM=AC. Tính quỷ tích M khi A di động trên cung AB của (o)
Cô hướng dẫn nhé. Bài này ta sử dụng tính chất góc có đỉnh nằm trong, trên và ngoài đường tròn.
a. Do \(\widehat{DBC}=\widehat{DIB}\Rightarrow\) cung DB = cung DB + cung KC.
Lại có do CD là phân giác nên \(\widehat{BCD}=\widehat{ACD}\) hay cung BD = cung DA. Vậy thì cung AK = cung KC hay AK = KC.
Vậy tam giác AKC cân tại K.
b. Xét tam giác ABC có CI và BI đều là các đường phân giác nên AI cũng là phân giác. Vậy AI luôn đi qua điểm chính giữa cung BC. Ta gọi là H.
AI lớn nhất khi \(AI\perp BC.\)
c. Gọi J là giao ddierm của HO với (O). Khi đó J cố định.
Ta thấy ngay \(\widehat{IAH}=90^o\)
Lại có AI là phân giác góc BAC nên Ạ là phân giác góc MAC. Lại do MAC cân tại A nên MJ = JC.
Vậy M luôn thuộc đường tròn tâm J, bán kinh JC (cố định).
hay ko