Cho AB , AC là các tiếp tuyến của đường tròn (O;R) với B,C \(\in\) (O) và OA =\(R\sqrt{2}\) . Lấy điểm M thuộc cung nhỏ BC . Tiếp tuyến của (O) tại M cắt AB , AC lần lượt tại D , E .
a) Tứ giác ABOC là hình gì
b) Tính chu vi ADE theo R
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
CM
14 tháng 1 2017
Đáp án B
* Theo tính chất hai tiếp tuyến cắt nhau ta có:
AB = AC; DB = DM; EM = EC
suy ra: DE = DM + ME = DB + EC.
* Chu vi tam giác ADE là:
AD + AE + DE = AD + AE + DB + EC
= (AD + DB ) + ( AE + EC ) = AB + AC = 2AB ( vì AB = AC )
Do AB là tiếp tuyến \(\Rightarrow\Delta OAB\) vuông tại A
Theo định lý Pitago:
\(AB=\sqrt{OA^2-OB^2}=\sqrt{2R^2-R^2}=R\)
\(\Rightarrow AB=OB\Rightarrow\Delta OAB\) vuông cân tại B
Hoàn toàn tương tự ta có tam giác \(OAC\) vuông cân tại C
\(\Rightarrow OBAC\) là hình vuông
b.
Do DB và DM là 2 tiếp tuyến \(\Rightarrow DB=DM\)
Tương tự ta có \(EM=EC\)
\(\Rightarrow\) Chu vi tứ giác ADE:
\(AD+DE+EA=AD+DM+ME+EA=AD+DB+EC+EA=AB+AC=2R\)