Cho đường tròn $(O;R)$ và dây cung $BC=R\sqrt3$ cố định. Điểm $A$ di động trên cung lớn $BC$ sao cho $\triangle{ABC}$ nhọn. Gọi $E$ là điểm đối xứng với $B$ qua $AC$ và $F$ là điểm đối xứng với $C$ qua $AB$. Các đường tròn ngoại tiếp $\triangle{ABE}$ và $\triangle{ACF}$ cắt nhau tại $K$ ($K$ không trùng với $A$). Gọi $H$ là giao điểm của $BE$ và $CF$.
a) Chứng minh $KA$ là phân giác trong $\widehat{BKC}$ và tứ giác $BHCK$ nội tiếp.
b) Xác định vị trí điểm A để diện tích tứ giác $BHCK$ lớn nhất, tính diện tích lớn nhất của tứ giác đó theo $R$.
c) Chứng minh $AK$ luôn đi qua một điểm cố định.