so sanh M va N M=10^2018+1/10^2019+1;N=10^2019+1/10^2020+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn sử dụng tính chất :nếu a/b<1 thì a/b<a+n/b+n
Bạn cộng tử và mẫu của E với 2017 rồi đặt 2018 ở cả tử và mẫu,rút gon cả tử và mẫu cho 2018 ta được phân số F
Từ đó E<F
Hoặc bạn nhan cả hai với 2018 rồi so sánh phần bù 2018E và 2018F .
Xin lỗi mình không thể trình bày ra được,hok tốt nha
\(M=\frac{10^{2018}+1}{10^{2019}+1}\)
\(\Rightarrow10M=\frac{10\left(10^{2018}+1\right)}{10^{2019}+1}=\frac{10^{2019}+1+9}{10^{2019}+1}=1+\frac{9}{10^{2019}+1}\)
\(N=\frac{10^{2019}+1}{10^{2020}+1}\)
\(\Rightarrow10N=\frac{10\left(10^{2019}+1\right)}{10^{2020}+1}=\frac{10^{2020}+1+9}{10^{2020}+1}=1+\frac{9}{10^{2020}+1}\)
Ta co: \(\frac{9}{10^{2019}+1}>\frac{9}{10^{2020}+1}\) ma \(1=1\)
\(\Rightarrow1+\frac{9}{10^{2019}+1}>1+\frac{9}{10^{2020}+1}\)
\(\Rightarrow10M>10N\)
\(\Rightarrow M>N\)
Ta có : \(\dfrac{1}{\sqrt{2019}-\sqrt{2018}}=\dfrac{\sqrt{2019}+\sqrt{2018}}{\left(\sqrt{2019}-\sqrt{2018}\right)\left(\sqrt{2019}+\sqrt{2018}\right)}=\dfrac{\sqrt{2019}+\sqrt{2018}}{2019-2018}=\sqrt{2019}+\sqrt{2018}< \sqrt{2020}+\sqrt{2019}\)
ta thấy\(1-\frac{2017}{2018}=\frac{1}{2018}>\frac{1}{2019}=1-\frac{2018}{2019}\)
\(\Rightarrow\frac{2017}{2018}< \frac{2018}{2019}\)
lam ca dap an va pt nua nha thanhk you