Cho tam giác ABC vuông cân ở A;M là điểm tùy ý nằm giữa B và C.Vẽ đường cao AH của tam giác ABC.
a) chứng minh AH=BC/2
b*)chứng minh MB^2+MC^2=2MA^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì ΔABC vuông cân tại A nên
Lại có: ( tính chất tam giác vuông).
Suy ra: ∠ C 1 = 45 0
Vì ∆ BCD vuông cân tại B nên
Lại có: ( tính chất tam giác vuông).
Suy ra: ∠ C 2 = 45 0
∠ (ACD) = ∠ C 1 + ∠ C 2 = 45 0 + 45 0 = 90 0
⇒ AC ⊥ CD
Mà AC ⊥ AB (gt)
Suy ra: AB //CD
Vậy tứ giác ABCD là hình thang vuông.
Tam giác ABC vuông cân tại A
⇒ ∠ (ACB) = 45 0
Tam giác EAC vuông cân tại E
⇒ ∠ (EAC) = 45 0
Suy ra: ∠ (ACB) = ∠ (EAC)
⇒ AE // BC (vì có cặp góc ở vị trí so le trong bằng nhau)
nên tứ giác AECB là hình thang có ∠ E = 90 0 . Vậy AECB là hình thang vuông
Vì ∆ ABC vuông cân tại A nên \(\widehat{C_1}=45^o\)
Vì ∆ BCD vuông cân tại B nên \(\widehat{C_2}=45^o\)
\(\Rightarrow\widehat{ACD}=\widehat{C_1}+\widehat{C_2}=45^o+45^o=90^o\)
\(\Rightarrow\) AC ⊥ CD, AC ⊥ AB (gt)
Suy ra: AB // CD. Vậy tứ giác ABDC là hình thang vuông.
a) Ta có : ACB = 45° ( ∆ABC vuông cân tại A )
Ta có : AEC = 45° ( ∆ACE vuông cân tại E )
=> ACB = AEC = 45°
Mà 2 góc này ở vị trí so le trong
=> AE//BC
=> AEBC là hình thang
Mà AEC = 90°
=> AEBC là hình thang vuông
∠ E = ∠ (ECB) = 90 0 , ∠ B = 45 0
∠ B + ∠ (EAB) = 180 0 (hai góc trong cùng phía bù nhau)
⇒ ∠ (EAB) = 180 0 - ∠ B = 180 0 – 45 0 = 135 0
Tam giác ABC vuông tại A. Theo định lí Py-ta-go ta có:
A B 2 + A C 2 = B C 2 mà AB = AC (gt)
⇒ 2 A B 2 = B C 2 = 2 2 = 4
A B 2 = 2 ⇒ AB= √2(cm) ⇒ AC = √2 (cm)
Tam giác AEC vuông tại E. Theo định lí Py-ta-go ta có:
E A 2 + E C 2 = A C 2 , mà EA = EC (gt)
⇒ 2 E A 2 = A C 2 = 2
E A 2 = 1
⇒ EA = 1(cm) ⇒ EC = 1(cm)
Ta có: \(\widehat{ADB}+\widehat{ADC}=180^o\) (2 góc kề bù)
Mà \(\widehat{ADC}=150^o\)
\(\Rightarrow\widehat{ADB}=30^o\)