K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2020

C B M F N A I E O K T

b, kẻ AO // BC

góc OAK so le trong KFB 

=> góc OAK = góc KFB (tc)

xét tam giác AOK và tam giác BMK có : AK = KM (do ...)

góc AKO = góc MBK (đối đỉnh)

=> tam giác AOK = tam giác BMK (g-c-g)= 

=> AO = MB (đn)

có AO // BC mà góc EOA đồng vị EMC 

=> góc EOA = góc EMC (tc)    (1)

gọi EF cắt tia phân giác của góc BCA tại T 

EF _|_ CT (gt)

=> tam giác ETC vuông tại T và tam giác CTF vuông tại T 

=> góc CET = 90 - góc ECT và góc TMC = 90 - góc TCM 

có có TCM = góc ECT do CT là phân giác của góc ACB (gt)

=> góc CET = góc TMC   và (1)

=> góc  AEO = góc AOE 

=> tam giác AEO cân tại A (tc)

=> AE = AO mà AO = BM 

=> AE = BM

4 tháng 2 2020

a, MB = MN (gt)

M nằm giữa N và B

=> M là trung điểm của NP (đn)

NI // AB (gt); xét tam giác ANB 

=> I là trung điểm của AN (đl)

b, 

2 tháng 10 2018

A B C M K I E D H

MK nêu cách giải thôi nha! Lười quá!!!

a, CM tứ giác MEAD là hình bình hành.( bạn tự cm)

Vì tứ giác MEAD là hình bình hành nên 2 đường chéo DE và AM cắt nhau tại trung điểm mỗi đường.

Mà điểm \(I\) là trung điểm của AM Suy ra \(I\) cũng là TĐ của DE

\(\Rightarrow I\in DE\) Suy ra \(I,D,E\) thẳng hàng

b, Kẻ \(IK\bot BC\) và \(AH\bot BC\) \((K,H \in BC)\)

Ta có

Vì  \(IA=IM\) và \(IK//AH\)

\(\Rightarrow MK=KH\) \(\Rightarrow \) \(IK\) là đường trung bình của \(\Delta AMH\)

\(\Rightarrow IK=\dfrac{AH}{2}\) (1)

Lại có: Áp dụng định lí Py-ta-go cho \(\Delta AHC\)

\(\Rightarrow AH^2=AC^2-HC^2\)

             \(=AC^2-{\left(\dfrac{BC}{2}\right)}^2\) \(=AC^2-{\left(\dfrac{AC}{2}\right)}^2\) ( Do \(\Delta ABC\) đều)

             \(=AC^2-\dfrac{AC^2}{4}=\dfrac{3AC^2}{4}\)

\(\Rightarrow AH=\dfrac{\sqrt3 AC}{4}\) (2) 

Từ (1)(2) suy ra \(IK=\dfrac{\sqrt3}{8}AC\)

Vì AC không đổi nên \(IK\) ko đổi.

Khoảng cách từ \(I\) đến BC ko đổi suy ra khi M di chuyển trên BC thì \(I\) di chuyển trên đường thẳng song song với BC

và cách BC một khoảng =\(\dfrac{\sqrt3}{8}AC=\dfrac{\sqrt3}{8}BC\)