K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔBED vuông tại E và ΔCFD vuông tại F có

BD=CD(gt)

\(\widehat{BDE}=\widehat{CDF}\)(đối đỉnh)

Do đó: ΔBED=ΔCFD(cạnh huyền-góc nhọn)

b) Xét ΔCDE và ΔBDF có 

CD=BD(gt)

\(\widehat{CDE}=\widehat{BDF}\)(hai góc đối đỉnh)

DE=DF(ΔBED=ΔCFD)

Do đó: ΔCDE=ΔBDF(c-g-c)

Suy ra: \(\widehat{CED}=\widehat{BFD}\)(hai góc tương ứng)

mà hai góc này là hai góc ở vị trí so le trong

nên CE//BF(Dấu hiệu nhận biết hai đường thẳng song song)

16 tháng 7 2021

tham khảo bạn nhé

a) Xét ΔBED vuông tại E và ΔCFD vuông tại F có

BD=CD(gt)

ˆBDE=ˆCDFBDE^=CDF^(đối đỉnh)

Do đó: ΔBED=ΔCFD(cạnh huyền-góc nhọn)

b) Xét ΔCDE và ΔBDF có 

CD=BD(gt)

ˆCDE=ˆBDFCDE^=BDF^(hai góc đối đỉnh)

DE=DF(ΔBED=ΔCFD)

Do đó: ΔCDE=ΔBDF(c-g-c)

Suy ra: ˆCED=ˆBFDCED^=BFD^(hai góc tương ứng)

mà hai góc này là hai góc ở vị trí so le trong

nên CE//BF 

Chúc bạn học tốt

24 tháng 4 2019

a)  Tam giác ABO và tam giác AEO có:

Góc AOB = góc AOE (=90 độ)

Góc BAO = góc EAO (AO là phân giác góc BAE)

Cạnh AO chung

=> tam giác ABO = tam giác AEO (g-c-g)    (1)

b)  Từ (1) => AB = AE => tam giác BAE cân tại A      (2)

c)  Từ (2) => AO là đường cao cũng là trung tuyến của tam giác BAE 

=> AD là đường trung trực của BE

d)  Tam giác BAE có hai đường cao AO và BK cắt nhau tại M nên M là trực tâm.

Gọi H là giao điểm của EM và AB => EH  đi qua trực tâm M nên là đường cao thứ ba của tam giác BAE

=> EM vuông góc AB

mà BC vuông góc AB (gt)

=> EM // BC

21 tháng 4 2021

xét ΔABH và ΔMBH có:

\(\widehat{HMB}\)=\(\widehat{HAB}\)=90o

BH là cạnh chung

\(\widehat{MBH}\)=\(\widehat{ABH}\)(BH la phân giác của \(\widehat{MBA}\))

⇒ΔABH=ΔMBH(cạnh huyền góc nhọn)

⇒BM=AB(2 cạnh tương ứng)

⇒ΔABM cân tại B

\(\widehat{ABM}\)=\(\widehat{MAB}\)

gọi I là giao điểm của AM và BH

xét ΔMBI và ΔABI có

AB=BM(ΔABH=ΔMBH)

\(\widehat{MBH}\)=\(\widehat{ABH}\)(BH là phân giác của \(\widehat{MBA}\))

\(\widehat{ABM}\)=\(\widehat{MAB}\)(chứng minh trên)

⇒ΔMBI=ΔABI (g-c-g)

\(\widehat{MIB}\)=\(\widehat{AIB}\)(2 góc tương ứng)(1)

Mà \(\widehat{MIB}\)+\(\widehat{AIB}\)=180o(2 góc kề bù)(2)

Từ (1) và (2) \(\widehat{MIB}\)=\(\widehat{AIB}\)=\(\dfrac{180^o}{2}\)=90o

⇒BH⊥AM (Điều phải chứng minh)

xét ΔCMH và ΔNAH có:

\(\widehat{CMH}\)=\(\widehat{HAN}\)=90o

\(\widehat{CHM}\)=\(\widehat{NHA}\)(2 góc đối đỉnh)

AH=HM(ΔABH=ΔMBH)

⇒ΔCMH=ΔNAH(g-c-g)

⇒HC=HN(2 cạnh tương ứng)

⇒ΔCHN cân tại H

\(\widehat{NCH}\)=\(\widehat{CNH}\)

vì ΔABH=ΔMBH

⇒AH=HM(2 cạnh tương ứng)

⇒ΔAHM cân tại H

\(\widehat{HMA}\)=\(\widehat{HAM}\)

xét ΔNHC và ΔMHA có

\(\widehat{MHA}\)=\(\widehat{CHN}\)(2 góc đối đỉnh)

\(\widehat{HMA}\)+\(\widehat{HAM}\)=\(\widehat{NCH}\)+\(\widehat{CNH}\)

Mà \(\widehat{HMA}\)=\(\widehat{HAM}\)(chứng minh trên)và\(\widehat{NCH}\)=\(\widehat{CNH}\)(chứng minh trên)

\(\widehat{HMA}\)=\(\widehat{NCH}\)

⇒AM // CN (điều phải chứng minh)

Xét ΔAEO vuông tại E và ΔADO vuông tại D có

AO chung

\(\widehat{EAO}=\widehat{DAO}\)

DO đó: ΔAEO=ΔADO

Suy ra: OE=OD