Cho tam giác ABC. Gọi I là trung điểm của AB;E là trung điểm cuả BI,D thuộc AC sao cho CD/CA=1/3. Gọi F là giao điểm của BD và CE. Tính tỉ số EF/FC;BF/BD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔNAB có
NM vừa là đường cao, vừa là trung tuyến
nên ΔBAN cân tại N
b: Xét ΔBAC có
M là trung điểm của BA
MN//AC
Do đó: N là trung điểm của BC
hình tự vẽ nha bn
ta có MI//AC,M la tđ của BC=> I là tđ của AB
MK//AB,M la tđ của BC=> K là tđ của AC
tam giác ABM có N la tđ của AM,I là tđ cua AB=> IN la đtb của tam giác ABM=> NI//BM=> NI//BC(M thuộc BC) (1)
tương tự NK là đtb của tam giác AMC=> NK//MC=> NK//BC (M thuộc BC) (2)
từ (1),(2)=> NI và NK trùng nhau
=> 3 điểm I,N,K thẳng hàng
ta có MK//AI (MK//AB),IM//AK (IM//AC)=> tứ giác AKMI là hbh
tứ giác AKMI là hbh => 2 đg chéo IK và AM cắt nhau tại tđ mỗi đg
mà N là tđ của AM=> N là tđ của IK
a: Xét tứ giác AHCM có
I là trung điểm của AC
I là trung điểm của HM
Do đó: AHCM là hình bình hành
mà \(\widehat{AHC}=90^0\)
nên AHCM là hình chữ nhật
Bài 1 : a) M là trung điểm AB
N là trung điểm AC
suy ra : MN là Đường trung bình của tam giác ABC
suy ra : MN // BC ; MN = BC/2
b) Ta có : MN // BC và M là trung điểm AB
Mà AD cắt MN tại I nên từ đó suy ra : I là trung điểm của cạnh AD
em chỉ giải được bài 1 thôi nên thông cảm ạ
a: Xét tứ giác AEBM co
D là trung điểm chung của AB và ME
MA=MB
DO đó: AEBM là hình thoi
b: Xét tứ giác AEMC có
AE//MC
AE=MC
Do đó: AEMC là hình bình hành
=>AM cắt EC tại trung điểm của mỗi đường
=>E,I,C thẳng hàng
c: Để AEBM là hình vuông thì góc AMB=90 độ
=>AM vuông góc với BC
=>ΔABC cân tại A
=>AB=AC
a) Xét ΔACN và ΔDBN có
NA=ND(gt)
\(\widehat{ANC}=\widehat{DNB}\)(hai góc đối đỉnh)
NC=NB(N là trung điểm của BC)
Do đó: ΔACN=ΔDBN(c-g-c)
b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC^2=BC^2-AB^2=5^2-3^2=16\)
hay AC=4(cm)
Ta có: ΔACN=ΔDBN(cmt)
nên AC=DB(hai cạnh tương ứng)
mà AC=4cm(cmt)
nên BD=4cm
Vậy: BD=4cm
Lấy G là trung điểm AD
\(\Rightarrow IG//BD,ID//CE\)
\(\Rightarrow\frac{BF}{BD}=\frac{BE}{BI}=\frac{1}{2}\)
\(\Rightarrow\frac{BF}{BD}=\frac{BI}{BA}\Rightarrow IF//AC\)
\(\Rightarrow\frac{EF}{FC}=\frac{EI}{IA}=\frac{1}{2}\)