Cho A = 16x4 - 8x3y + 7x2y2 - 9y4 ; -15x4 + 3x3y - 5x2y2 - 6y4 ; C = 5x3y + 3x2y2 + 17y4 + 1 . Chứng minh rằng : Ít nhất 1 trong 3 đa thức có giá trị dương vs mọi x , y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta cộng cả ba đa thức vói nhau có :
$A+B+C = (16x^4-8x^3y+7x^2y^2-9y^4) + (-15x^4+3x^3y - 5x^2y^2-6y^4) + (5x^6y+ 3x^2y^2+17y^4+1)$
$ = x^4 + 5x^2y^2 + 2y^4 + 1 > 0 $
Do đó một trọng ba đa thức trên có giá trị dương với mọi x,y.
`(2x-y)(16x^4+8x^3y+4x^2y^2+2xy^3+y^4)`
`=(2x-y)[(2x)^4+(2x)^3y+(2x)^2y^2+2xy^3+y^4)`
`=(2x)^5-y^5`
`=32x^5-y^5`
Để số 8x3y chia hết cho 5 thì y = 0 hoặc y = 5
Khi y = 0 thì để số 8x3y chia hết cho 3 thì x = 4 hoặc x = 7
khi y = 5 thì để 8x3y chia hết cho 3 thì x = 2 hoặc x = 5 hoặc x = 8
b)
\(A+B=\left(x^2y+2xy^2-7x^2y^2+x^4\right)+\left(5x^2y^2-2xy^2-x^2y-3x^4-1\right)\)
\(A+B=x^2y+2xy^2-7x^2y^2+x^4+5x^2y^2-2xy^2-x^2y-3x^4-1\)
\(A+B=(x^2y-x^2y)+(2xy^2-2xy^2)+(-7x^2y^2+5x^2y^2)+(x^4-3x^4)-1\)
\(A+B=-2x^2y^2-2x^4-1\)
c) \(-2.1^2.1^2-2.1^4-1=-3\)
CÂU C BẠN TÌM CÁCH LÀM NHA MIK KHÔNG BIẾT CÁCH TRÌNH BÀY
`@` `\text {Ans}`
`\downarrow`
`7x^2y^2 - 10x^2yz + 1 - 3x^2yz`
`= 7x^2y^2 + (-10x^2yz - 3x^2yz) + 1`
`= 7x^2y^2 - 13x^2yz + 1`
Ta có 7 x 2 y 2 – 21 x y 2 z + 7 x y z + 14 x y
= 7xy.xy – 7xy.3yz + 7xy.z + 7xy.2 = 7xy(xy – 3yz + z + 2)
Đáp án cần chọn là: D
Mới hok lớp 1 nên ko bt lm he