Cho ΔABC, M là trung điểm BC. Trên tia đối của tia MA lấy E sao cho CE // AB
a) Chứng minh : ΔABM = ΔECM
b) Chứng minh : AC//BE
c) Cho BH⊥BC(H ∈ BC); CK⊥BE(K ∈BE). Chứng minh : KH=BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta\)ABM và \(\Delta\)ECM có:
BM = CM (M là trung điểm BC)
MA = ME (gt)
\(\widehat{AMB}=\widehat{EMC}\) (đối đỉnh)
\(\Rightarrow\) \(\Delta\)ABM = \(\Delta\)ECM (c-g-c)
b) Do \(\Delta ABM=\Delta ECM\left(cmt\right)\)
\(\Rightarrow AB=CE\) (hai cạnh tương ứng)
c) Xét \(\Delta ACM\) và \(\Delta EBM\) có:
CM = BM (M là trung điểm BC)
MA = ME (gt)
\(\widehat{AMC}=\widehat{BME}\) (đối đỉnh)
\(\Rightarrow\Delta ACM=\Delta EBM\left(c-g-c\right)\)
\(\Rightarrow\widehat{A_1}=\widehat{E_1}\)
Mà \(\widehat{A_1}\) và \(\widehat{E_1}\) là hai góc so le trong
\(\Rightarrow\) AC // BE
b: Xét tứ giác ABEC có
M là trung điểm của BC
M là trung điểm của AE
Do đó: ABEC là hình bình hành
Suy ra: AB//CE
a: Xét tứ giác ABEC có
M là trung điểm của BC
M là trung điểm của AE
Do đó: ABEC là hình bình hành
Suy ra: AB=CE
c: Ta có: ABEC là hình bình hành
nên \(\widehat{BAC}=\widehat{BEC}\)
a/ Xét tam giác ABM và tam giác ACM có:
AB = AC (GT)
AM: cạnh chung
BM = MC (GT)
=> tam giác ABM = tam giác ACM (c.c.c)
Bài 1: Ta có hình vẽ sau:
a)Xét ΔABM và ΔECM có:
BM = CM (gt)
\(\widehat{AMB}=\widehat{EMC}\) (đỗi đỉnh)
MA = ME (gt)
=> ΔABM = ΔACM (c.g.c) (đpcm)
b) Vì ΔABM = ΔECM (ý a)
=> \(\widehat{MAB}=\widehat{MEC}\) (2 góc tương ứng)
mà 2 góc này lại ở vị trí so le trong nên
=> AB // CE (đpcm)
Bài 5: Ta có hình vẽ sau:
a) Vì OA = OB (gt) và AC = BD (gt)
=> OC = OD
Xét ΔOAD và ΔOBC có:
OA = OB (gt)
\(\widehat{O}\) : Chung
OC = OD (cm trên)
=> ΔOAD = ΔOBC (c.g.c)
=> AD = BC (2 cạnh tương ứng)(đpcm)
b) Vì ΔOAD = ΔOBC(ý a)
=> \(\widehat{OBC}=\widehat{OAD}\) và \(\widehat{ODA}=\widehat{OCB}\)
(những cặp góc tương ứng)
Xét ΔEAC và ΔEBD có:
\(\widehat{OBC}=\widehat{OAD}\) (cm trên)
AC = BD (gt)
\(\widehat{ODA}=\widehat{OCB}\) (cm trên)
=> ΔEAC = ΔEBD (g.c.g) (đpcm)
c) Vì ΔEAC = ΔEBD (ý b)
=> EA = EB (2 cạnh tương ứng)
Xét ΔOAE và ΔOBE có:
OA = OB (gt)
\(\widehat{OBC}=\widehat{OAD}\) (đã cm)
EA = EB (cm trên)
=> ΔOAE = ΔOBE (c.g.c)
=> \(\widehat{AOE}=\widehat{BOE}\) (2 góc tương ứng)
=> OE là phân giác của \(\widehat{xOy}\)
Bạn tự vẽ hình nhé!
a/ Vì AB // CE nên \(\widehat{ABC}=\widehat{BCE}\)( vì là 2 góc so le trong )
Ta có: \(\widehat{AMB}=\widehat{CME}\)( vì là 2 góc đối đỉnh )
Xét tam giác AMB và tam giác CEM có:
\(\hept{\begin{cases}\widehat{ABC}=\widehat{BCE}\left(cmt\right)\\BM=MC\left(gt\right)\\\widehat{AMB}=\widehat{CME}\left(cmt\right)\end{cases}}\)
suy ra tam giác ABM = tam giác ECM ( g.c.g)
Nhớ k cho mình nhé! Thank you!!!