K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2018

X4 hay x4 ?

15 tháng 7 2018

\(C=x^4-x^3+2x^2-11x-5\)

\(=\left(x^4+x^3+5x^2\right)-\left(2x^3+2x^2+10x\right)-\left(x^2+x+5\right)\)

\(=x^2\left(x^2+x+5\right)-2x\left(x^2+x+5\right)-\left(x^2+x+5\right)\)

\(=\left(x^2-2x-1\right)\left(x^2+x+5\right)\)

4 tháng 9 2018

đi rồi bày cho

4 tháng 9 2018

\(C=x^4-x^3+2x^2-11x-5\)

   \(=x^4+x^3+5x^2-2x^3-2x^2-10x-x^2-x-5\)

   \(=x^2\left(x^2+x+5\right)-2x\left(x^2+x+5\right)-\left(x^2+x+5\right)\)

   \(=\left(x^2+x+5\right)\left(x^2-2x-1\right)\)

Bài này phải dùng phương pháp hệ số bất định (bài này khó)

C có dạng \(\left(x^2+ax+b\right)\left(x^2+cx+d\right)=x^4+\left(a+c\right)x^3+\left(ac+b+d\right)x^2+\left(ad+bc\right)x+bd\)

Đồng nhất với đa thức C thì phải giải 4 cái sau:

\(a+c=-1\left(1\right),ac+b+d=2\left(2\right),ad+bc=-11\left(3\right),bd=-5\left(4\right)\)

Giải (4) trước (vì \(b,d\in Z\)

Rồi thay vào thử tìm a,c (hơi lâu vì bài này trong 4 ước chỉ tìm được duy nhất 1 giá trị của b và d)

Lời giải thích trên hơi khó hiểu đúng ko? Chúc bạn học tốt.

13 tháng 8 2019

a) \(A=x^4-6x^3+11x^2-6x+1\)

\(A=\left(x^4-3x^3+x^2\right)-\left(3x^3-9x^2+3x\right)+x^2-3x+1\)

\(A=x^2\left(x^2-3x+1\right)-3x\left(x^2-3x+1\right)+\left(x^2-3x+1\right)\)

\(A=\left(x^2-3x+1\right)^2\)

b) \(B=x^4-x^3+2x^2-11x-5\)

\(B=x^2\left(x^2-2x-1\right)+x\left(x^2-2x-1\right)+5\left(x^2-2x-1\right)\)

\(B=\left(x^2-2x-1\right)\left(x^2+x+5\right)\)

4 tháng 7 2018

Ta có

\(A=3x^4+11x^3-7x^2-2x+1\)có tận cùng là 1

\(1=1\cdot1=-1\cdot\left(-1\right)\)

\(\Rightarrow3x^4+11x^3-7x^2-2x+1=\left(ax+1\right)\left(bx^3+cx^2+dx+1\right)\)

Vì \(3=1\cdot3=\left(-1\right)\cdot\left(-3\right)\)

=> Ta thấy A=1 hoặc A=-1 là không thể

=> A=-3 hoặc A=3

Đặt phép tính cho từng trường hợp ta được

\(3x^4+11x^3-7x^2-2x+1=\left(-3x+1\right)\left(-x^3-4x^2+x+1\right)\)

4 tháng 9 2018

đi rồi bày cho

31 tháng 10 2015

Vì tận cùng là 1 (1=1.1 hoặc -1.-1)

=> 3x4+3x3-7x2-2x+1 = (ax +1)(bx3+cx2+dx+1) (1=-1.-1 thì đặt dấu trừ ra ngoài sẽ mất dấu)

Vì 3=1.3 hoặc -1.-3

=> ta thấy a=1 hoặc -1 là không thế (nhìn vào là biết thôi)

=> a=-3 hoặc 3 

Đặt phép tính chia cho từng trường hợp ta được 3x4+11x3-7x2-2x+1= (-3x+1)(-x3-4x2+x+1)

Đây là cách suy luận của mình khi làm bài trên còn ghi vào giấy thì đừng làm vậy nhé

Chỉ cần ghi : 3x4+11x3-7x2-2x+1 = 3x4 -x3 +12x3 .... v.v => đặt nhân tử chung

20 tháng 2 2016

Vì đa thức (x−a)(x−10)+1(x−a)(x−10)+1 có thể phân tích thành tích của hai đa thức bậc nhất có hệ số nguyên nên ta chỉ có hai cách phân tích duy nhất là: 

1)(x−a)(x−10)=(x+b)(x+c)2)(x−a)(x−10)=(−x+b)(−x+c)1)(x−a)(x−10)=(x+b)(x+c)2)(x−a)(x−10)=(−x+b)(−x+c) với b,c∈Zb,c∈Z

Ta sẽ tìm aa trong trường hợp 1)1), trường hợp còn lại làm tương tự

(x−a)(x−10)+1=(x−b)(x−c)⇔x2−(a+10)x+10a+1=x2+(b+c)x+bc(x−a)(x−10)+1=(x−b)(x−c)⇔x2−(a+10)x+10a+1=x2+(b+c)x+bc

Đồng nhất, ta được {b+c=−(a+10)bc=10a+1{b+c=−(a+10)bc=10a+1

⇒b,c⇒b,c là hai nghiệm nguyên của PT X2+(a+10)X+10a+1=0X2+(a+10)X+10a+1=0 với aa nguyên

⇒Δ=(a+10)2−40a−4=m2(m∈N)⇔(a−10)2−4=m2⇔(a−m−10)(a+m−10)=4⇒Δ=(a+10)2−40a−4=m2(m∈N)⇔(a−10)2−4=m2⇔(a−m−10)(a+m−10)=4

Vì a−m−10a−m−10 và a+m−10a+m−10 cùng tính chẵn lẻ và a+m−10≥a−m−10a+m−10≥a−m−10 nên:

{a+m−10=2a−m−10=2⇒a=12{a+m−10=2a−m−10=2⇒a=12

Hoặc : 

{a+m−10=−2a−m−10=−2⇒a=8

20 tháng 2 2016

\(x^2-\left(a+10\right)x+10a+1=0\)

\(\Delta=a^2+20a+100-40a-4=\left(a-10\right)^2-4=\left(a-6\right)\left(a-14\right)\)

a thuộc Z => \(\Delta\) là số nguyên ; để TM yêu cầu => \(\Delta\) là số chính phương 

=> a =6 ; a =14