1. Tam giác ABC, G là trọng tâm tam giác và M bất kì trong tam giác, Đường thẳng qua M,G cắt BC,CA,AB tại A';B';C'. Chứng minh:
\(\frac{MA'}{GA'}+\frac{MB'}{GB'}+\frac{MC'}{GC'}=3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) Gọi AP là đường trung tuyến của \(\Delta\)ABC, giao điểm của tia AM và BC là D. Qua M kẻ đường thẳng song song với AP, nó cắt BC tại N.
Xét \(\Delta\)PDA có: M thuộc AD; N thuộc PD; MN // AP => \(\frac{MN}{AP}=\frac{DM}{DA}\Rightarrow\frac{DM}{DA}=\frac{MN}{3.GP}\) (ĐL Thales) (*)
Xét \(\Delta\)GA'P có: M thuộc GA'; N thuộc PA'; MN // GP => \(\frac{MN}{GP}=\frac{MA'}{GA'}\), thế vào (*) được
\(\frac{DM}{DA}=\frac{1}{3}.\frac{MA'}{GA'}\). Chứng minh tương tự: \(\frac{EM}{EB}=\frac{1}{3}.\frac{MB'}{GB'};\frac{FM}{FC}=\frac{1}{3}.\frac{MC'}{GC'}\)
Suy ra \(\frac{1}{3}\left(\frac{MA'}{GA'}+\frac{MB'}{GB'}+\frac{MC'}{GC'}\right)=\frac{DM}{DA}+\frac{EM}{EB}+\frac{FM}{FC}\)
\(\Rightarrow\frac{MA'}{GA'}+\frac{MB'}{GB'}+\frac{MC'}{GC'}=3\left(\frac{DM}{DA}+\frac{EM}{EB}+\frac{FM}{FC}\right)\)(1)
+) Gọi giao điểm của BM và AC là E; CM với AB là F. Qua M kẻ 2 đường thẳng song song với AB và BC, chúng cắt AC lần lượt tại H và K.
Áp dụng ĐL Thales, ta có các tỉ số:
\(\frac{DM}{DA}=\frac{CK}{AC};\frac{FM}{FC}=\frac{AH}{AC};\frac{EM}{EB}=\frac{EH}{EA}=\frac{EK}{EC}=\frac{EH+EK}{EA+EC}=\frac{HK}{AC}\)
Cộng các tỉ số trên, ta được: \(\frac{DM}{DA}+\frac{EM}{EB}+\frac{FM}{FC}=\frac{CK+HK+AH}{AC}=\frac{AC}{AC}=1\)(2)
+) Từ (1) và (2) => \(\frac{MA'}{GA'}+\frac{MB'}{GB'}+\frac{MC'}{GC'}=3\) (đpcm).