Cho đường phân giác AD của tam giác ABC chia cạnh BC thành 2 phần CD=2,5;BD=3 khi đó tỉ số AB/AC bằng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: BD+CD=BC(D nằm giữa B và C)
nên BC=CD+BD=4,5+12,5=17(cm)
Ta có: Chu vi của tam giác ABC là 42cm(gt)
nên AB+AC+BC=42
hay AB+AC=25(cm)
Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)
nên \(\dfrac{AB}{BD}=\dfrac{AC}{CD}\)(Tính chất đường phân giác của tam giác)
\(\Leftrightarrow\dfrac{AB}{12.5}=\dfrac{AC}{4.5}\)
mà AB+AC=25(cm)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AB}{12.5}=\dfrac{AC}{4.5}=\dfrac{AB+AC}{12.5+4.5}=\dfrac{25}{17}\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{AB}{12.5}=\dfrac{25}{17}\\\dfrac{AC}{4.5}=\dfrac{25}{17}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=\dfrac{25\cdot12.5}{17}=\dfrac{625}{34}\\AC=\dfrac{25\cdot4.5}{17}=\dfrac{225}{34}\end{matrix}\right.\)
Vậy: \(AB=\dfrac{625}{34}cm;AC=\dfrac{225}{34}cm\)
a: BD=36mm=3,6cm
CD=60mm=6cm
=>BC=9,6cm
AB/AC=BD/CD=3,6/6=3/5
=>BH/CH=(AB/AC)^2=9/25
b: BH/CH=9/25
=>BH/9=CH/25=(BH+CH)/(9+25)=9,6/34=24/85
=>BH=216/85; CH=120/17
AH=căn BH*CH=72/17(cm)
Xét ΔABC có
AD là đường phân giác ứng với cạnh BC(gt)
nên \(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)(Tính chất tia phân giác của tam giác)
hay \(\dfrac{AB}{AC}=\dfrac{3}{5}\)
Ta có: \(\dfrac{AB}{AC}=\dfrac{3}{5}\)
nên \(AB=\dfrac{3}{5}AC\)
Ta có: BD+CD=BC(D nằm giữa B và C)
nên BC=36+60=96(cm)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow\left(\dfrac{3}{5}AC\right)^2+AC^2=96\)
\(\Leftrightarrow\dfrac{34}{25}AC^2=96\)
\(\Leftrightarrow AC^2=\dfrac{1200}{17}\)
\(\Leftrightarrow AB=\dfrac{3}{5}AC=\dfrac{3}{5}\cdot\dfrac{20\sqrt{51}}{17}=\dfrac{12\sqrt{51}}{17}\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC nên
\(\dfrac{BH}{CH}=\dfrac{AB^2}{AC^2}\)
\(\Leftrightarrow\dfrac{BH}{CH}=\dfrac{432}{17}:\dfrac{1200}{17}=\dfrac{432}{1200}=\dfrac{9}{25}\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH\cdot96=\dfrac{12\sqrt{51}}{17}\cdot\dfrac{20\sqrt{51}}{17}=\dfrac{720}{17}\)
hay \(AH=\dfrac{15}{34}\left(cm\right)\)
tại sao tam giác ABC vuông tại A có AH là đg cao ứng với cạnh huyền BC thì suy ra cái kia
giải thích đc không
ta có BD là đgờng phân giác trong tam giác ABC
\(\Rightarrow\frac{AB}{BD}=\frac{AC}{CD}\Leftrightarrow\frac{AB}{36}=\frac{AC}{60}\Rightarrow\frac{AB}{AC}=\frac{36}{60}=\frac{3}{5}\)
Ta có : \(AB^2=BC.BH\Rightarrow BH=\frac{AC^2}{BC}\)
\(AC^2=CH.BC\Rightarrow HC=\frac{AC^2}{BC}\)
TA CÓ :\(\frac{HB}{HC}=\frac{\frac{AB^2}{BC}}{\frac{AC^2}{BC}}=\frac{AB^2}{BC}.\frac{BC}{AC^2}=\frac{AB^2}{AC^2}=\frac{3^2}{5^2}=\frac{9}{25}\)
B) ta có tam giác AHB đồng dạng tam giác CHA ( bn c/m nka ~ dễ lắm )
\(\Rightarrow\frac{HA}{HC}=\frac{HB}{HA}\Rightarrow HA^2=HB.HC\)
Ta có : HB + HC = 96
VÀ \(\frac{HB}{HC}=\frac{9}{25}\)
giải tìm HB , HC nhen thế vô pt là ok ^^
a, Xét △DAB và △CBD có:
∠DAB=∠DCB (= 90 độ), AB//DC => ∠ABD=∠BDC (=60 độ) (so le trong)
=> △DAB ∼ △CBD (g.g)
Ta có: ∠ADB=180 độ - 90 độ - 60 độ = 30 độ
mà ∠ADB=∠DCB => ∠DCB=30 độ (1)
Ta có: ∠BDI=∠CDI= \(\dfrac{60độ}{2}\)= 30 độ (2)
Từ (1), (2) ta có: ∠DCB=∠CDI= 30 độ
=> △IDC cân tại I
a) Xét ΔABC có
AD là đường phân giác ứng với cạnh BC(gt)
nên \(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)(Tính chất đường phân giác của tam giác)
hay \(\dfrac{AB}{AC}=\dfrac{1}{2}\)
Ta có: BD+CD=BC(D nằm giữa B và C)
nên BC=2+4=6(cm)Xét ΔABC có
AF là đường phân giác góc ngoài ứng với cạnh BC(gt)
nên \(\dfrac{FB}{FC}=\dfrac{AB}{AC}\)(Tính chất đường phân giác góc ngoài)
\(\Leftrightarrow\dfrac{FC}{FB}=\dfrac{AC}{AB}=2\)
\(\Leftrightarrow\dfrac{FC-FB}{FB}=\dfrac{AC-AB}{AB}\)
\(\Leftrightarrow\dfrac{BC}{FB}=1\)
hay FB=6(cm)
Ta có: FB+BD=FD(B nằm giữa F và D)
nên FD=6+2=8(cm)
Vậy: FD=8cm
Ai dúp mình với
AB/AC=BD/CD=6/5