K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HE là đường cao ứng với cạnh huyền BA, ta được:

\(AE\cdot AB=AH^2\left(1\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HF là đường cao ứng với cạnh huyền CA, ta được:

\(AF\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)

hay \(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)

Xét ΔAEF vuông tại A và ΔACB vuông tại A có 

\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)

Do đó: ΔAEF\(\sim\)ΔACB

29 tháng 8 2021

câu c đâu bạn

a: ΔAHB vuông tại H có HE là đường cao

nên AH^2=AE*AB

b: ΔAHC vuông tại H có HF là đường cao

nên AH^2=AF*AC

=>AE*AB=AF*AC

=>AE/AC=AF/AB

Xét ΔAEF vuông tại A và ΔACB vuông tại A có

AE/AC=AF/AB

=>ΔAEF đồng dạng với ΔACB

 

26 tháng 3 2017

a) + AH2 = BH.CH = 9.16 = 144 AH = 12cm

+ AB2 = BH. BC = 9.25 AB  = 15cm

+ AC2 =  CH.BC = 16.25 AC = 20cm  

b) Chứng minh được tứ giác ADHE là hình chữ nhật  

c) +HD.AB = HA.HB HD = HA.HB/AB= 12.9/15 = 7,2cm

+HE.AC = HA.HC HE = HA.HC /AC = 12.16/20 = 9,6cm

+ Chu vi ADHE:  (HD + HE ).2 = (7,2 + 9,6).2 = 33,6(cm)  

 + SADHE = HD.HE = 7,2. 9,6  =  69,12(cm2)  



 

1 tháng 7 2022

a)Áp dụng HTL2 vào tam giác ABC cuông tại A, đường cao AH ta có:

AH2=BH.HC=9.16=144

<=>AH=√144=12((cm)

Áp dụng định lý Pytago vào tam giác vuông BHA ta có:

BA2=AH2+BH2=122+92=225

<=>BA=√225=15(cm)

Áp dụng định lý Pytago vào tam giác vuông CHA ta có:

CA2=AH2+CH2=122+162=20(cm)

Vậy AB=15cm,AC=20cm,AH=12cm

3 tháng 7 2021

a)Áp dụng hệ thức lượng trong tam giác vuông có:

\(AH^2=AE.AB\)

\(AH^2=AF.AC\)

\(\Rightarrow AE.AB=AF.AC\)

b)(\(\dfrac{BE}{CF}\) chứ)

Áp dụng hệ thức lượng trong tam giác vuông có:

\(AB^2=BH.BC\)

\(AC^2=CH.BC\)

\(\Rightarrow\dfrac{AB^2}{AC^2}=\dfrac{BH}{CH}\)\(\Leftrightarrow\dfrac{AB^4}{AC^4}=\dfrac{BH^2}{CH^2}=\dfrac{BE.AB}{CF.AC}\)

\(\Leftrightarrow\dfrac{BE}{CF}=\left(\dfrac{AB}{AC}\right)^3\)

c)Áp dụng định lý Thales có:

\(\dfrac{BH}{BC}=\dfrac{BE}{BA}\Leftrightarrow BA.BH=BE.BC\)

\(\dfrac{CF}{CA}=\dfrac{CH}{BC}\Leftrightarrow CF.BC=CA.CH\)

\(\Rightarrow BA.CA.BH.CH=BE.CF.BC^2\)

\(\Leftrightarrow AH.BC.AH^2=BC^2.BE.BF\)

\(\Leftrightarrow BC^..BE.BF=AH^3\) 

Vậy ....

3 tháng 7 2021

a) Xét \(\Delta AHB\) vuông tại H có \(HE\bot AB\Rightarrow AE.AB=AH^2\)

Xét \(\Delta AHC\) vuông tại H có \(HF\bot AC\Rightarrow AF.AC=AH^2\)

\(\Rightarrow AE.AB=AF.AC\)

b) sửa đề: \(\dfrac{BE}{CF}=\left(\dfrac{AB}{AC}\right)^3\)

Dễ dàng chứng minh được EHAF là hình chữ nhật (có 3 góc vuông)

Ta có: \(\dfrac{AB^2}{AC^2}=\dfrac{BH.BC}{CH.BC}=\dfrac{BH}{CH}\)

Vì \(HF\parallel AB\) \(\Rightarrow\angle EBH=\angle FHC\)

Xét \(\Delta BEH\) và \(\Delta HFC:\) Ta có: \(\left\{{}\begin{matrix}\angle BEH=\angle HFC=90\\\angle EBH=\angle FHC\end{matrix}\right.\)

\(\Rightarrow\Delta BEH\sim\Delta HFC\left(g-g\right)\Rightarrow\dfrac{HB}{HC}=\dfrac{HE}{CF}\)

\(\Rightarrow\dfrac{AB^3}{AC^3}=\dfrac{EH}{CF}.\dfrac{AB}{AC}=\dfrac{HE.AB}{AC.CF}\left(1\right)\)

Vì \(HE\parallel AC\) \(\Rightarrow\dfrac{AB}{AC}=\dfrac{BE}{HE}\Rightarrow BE=\dfrac{AB}{AC}.HE\left(2\right)\)

Thế (2) vào (1) \(\Rightarrow\dfrac{BE}{CF}=\left(\dfrac{AB}{AC}\right)^3\)

c) Ta có: \(AH^4=\left(AH^2\right)^2=\left(BH.CH\right)^2=BH^2.CH^2\)

\(=BE.BA.CF.CA=BE.CF.AH.BC\left(AB.AC=AH.BC\right)\)

\(\Rightarrow AH^3=BE.CF.BC\)

 

 

18 tháng 12 2020

Hình vẽ:

a, \(\Delta AHD\) vuông tại \(H\)\(HD\perp AB\Rightarrow AD.AB=AH^2\)

\(\Delta AHC\) vuông tại \(H\)\(HE\perp AC\Rightarrow AE.AC=AH^2\)

\(\Rightarrow AD.AB=AE.AC\)

b, Ta cần chứng minh \(NE\perp DE;MD\perp DE\)

Ta có \(\Delta AHE\sim\Delta ACH\left(g-g\right)\)

\(\Rightarrow\widehat{AHE}=\widehat{ACH}\)

Vì ADHE là hình chữ nhật nên \(\widehat{ADE}=\widehat{AHE}\)

\(\Rightarrow\widehat{ADE}=\widehat{ACH}\)

Lại có \(\widehat{MDB}=\widehat{MBD}\Rightarrow\widehat{ADE}+\widehat{MDB}=90^o\)

\(\Rightarrow\widehat{MDE}=90^o\Rightarrow MD\perp DE\)

Tương tự \(NE\perp DE\)

\(\Rightarrowđpcm\)

18 tháng 12 2020

Hình vẽ: 

a, \(\Delta AHD\) vuông tại \(H\)\(HD\perp AB\Rightarrow AD.AB=AH^2\)

\(\Delta AHC\) vuông tại \(H\)\(HE\perp AC\Rightarrow AE.AC=AH^2\)

\(\Rightarrow AD.AB=AE.AC\)

b, Ta cần chứng minh \(NE\perp DE;MD\perp DE\)

Ta có \(\Delta AHE\sim\Delta ACH\left(g-g\right)\)

\(\Rightarrow\widehat{AHE}=\widehat{ACH}\)

Vì ADHE là hình chữ nhật nên \(\widehat{ADE}=\widehat{AHE}\)

\(\Rightarrow\widehat{ADE}=\widehat{ACH}\)

Lại có \(\widehat{MDB}=\widehat{MBD}\Rightarrow\widehat{ADE}+\widehat{MDB}=90^o\)

\(\Rightarrow\widehat{MDE}=90^o\Rightarrow MD\perp DE\)

Tương tự \(NE\perp DE\)

\(\Rightarrowđpcm\)

c, Q là giao điểm của DE và AH (Ghi đúng đề)

\(BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10\left(cm\right)\)

Vì \(MNED\) là hình thang nên 

\(PQ=\dfrac{1}{2}\left(MD+NE\right)=\dfrac{1}{4}\left(BH+CH\right)=\dfrac{1}{4}BC=2,5\left(cm\right)\)

P/s: Đăng 1 lần thôi.

27 tháng 12 2020

hì hì, cảm ơn bạn nha.yeu