K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
25 tháng 9 2019

Bạn viết nhầm tập hợp A

\(A\cap B\ne\varnothing\Leftrightarrow m+3>2m-1\)

\(\Rightarrow m< 4\)

NV
18 tháng 9 2020

\(\left(A\backslash B\right)\cup\left(A\backslash C\right)=\varnothing\Leftrightarrow\left\{{}\begin{matrix}A\backslash B=\varnothing\\A\backslash C=\varnothing\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}A\subset B\\A\subset C\end{matrix}\right.\) \(\Leftrightarrow A\subset\left(B\cap C\right)\)

\(B\cap C=\left(-1;1\right)\Rightarrow\left\{{}\begin{matrix}m-2>-1\\2m+5\le1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}m>1\\m\le-2\end{matrix}\right.\) ko tồn tại m thỏa mãn yêu cầu

AH
Akai Haruma
Giáo viên
1 tháng 10 2020

Lời giải:

$A\cap B\cap C=A\cap (B\cap C)$

Để tập hợp trên khác rỗng thì trước hết $B\cap C\neq \varnothing$

Điều này xảy ra khi $2m>m\Leftrightarrow m>0$

Khi đó: $B\cap C=(m; 2m)$

$\Rightarrow A\cap B\cap C=((-3;-1)\cup (1;2))\cap (m; 2m)$

$=((-3;-1)\cap (m;2m))\cup ((1;2)\cap (m; 2m))$

$=(1;2)\cap (m; 2m)$ (do $m>0$)

Để $(1;2)\cap (m; 2m)\neq \varnothing$ thì:

\(\left\{\begin{matrix} 2m>1\\ m< 2\end{matrix}\right.\Leftrightarrow m\in (\frac{1}{2};2)\)

Vậy...........

12 tháng 3 2021

Có dấu = nha, mình nhầm

12 tháng 3 2021