\(A=\frac{1}{71}+\frac{2}{70}+\frac{3}{69}+\frac{4}{68}+...+\frac{70}{2}+\frac{71}{1};B=\frac{1}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{71}+\frac{1}{72}}AxB=?\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{70}=\left[1+\frac{1}{70}\right]+\left[\frac{1}{2}+\frac{1}{69}\right]+\left[\frac{1}{3}+\frac{1}{68}\right]+...+\left[\frac{1}{35}+\frac{1}{36}\right]\)
\(=\frac{71}{1.70}+\frac{71}{2.69}+\frac{71}{3.68}+...+\frac{71}{35.36}\)
\(=71\left[\frac{1}{1.70}+\frac{1}{2.69}+\frac{1}{3.68}+...+\frac{1}{35.36}\right]⋮71\)
=> \(A=1\times2\times3\times4\times...\times70\times\left[1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{70}\right]⋮71\)=> ĐPCM
AI THẤY ĐÚNG NHỚ ỦNG HỘ NHA
Xét \(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{70}=\left(1+\frac{1}{70}\right)+\left(\frac{1}{2}+\frac{1}{69}\right)+...+\left(\frac{1}{35}+\frac{1}{36}\right)\)
\(=\frac{71}{1.70}+\frac{71}{2.69}+...+\frac{71}{35.36}=71\left(\frac{1}{1.70}+\frac{1}{2.69}+...+\frac{1}{35.36}\right)\)
=>\(A=1.2.3.4...71.\left(\frac{1}{1.70}+\frac{1}{2.69}+...+\frac{1}{35.36}\right)⋮71\)
Vậy A chia hết cho 71
A = \(\frac{4\left(\frac{1}{78}-\frac{1}{60}-\frac{1}{306}\right)}{9\left(\frac{1}{78}-\frac{1}{60}-\frac{1}{306}\right)}:\frac{1+\frac{2}{71}-\frac{5}{121}}{-13\left(1+\frac{2}{71}-\frac{5}{121}\right)}=\frac{4}{9}:-\frac{1}{13}\)
Đoán thôi