K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2020

a, xét tam giác AHD và tam giác AHB có : AH hcung

góc AHD = góc AHB = 90 

HD = HB (Gt)

=> tam giác HAB = tam giác HAD (2cgv)

=> AD = AB (Đn)

=> tam giác ABD cân tại  (Đn)

có góc BAC = 60 (gt)

=> tam giác ABD đều

b, tam giác ABC vuông tại A (gt)

=> góc ABC + góc ACB  = 90 (Đl)

góc ABC = 60 (gt)

=> góc ACB = 30  mà tam giác ABC vuông tại A (gt)

=> AB = BC/2 (đl)

có AB = AD = BD do tam giác ABD đều (câu a)

=> AD  = BD = BC/2 

BD + CB = BC 

=> AD = DC = BC/2

7 tháng 8 2017

Vì tam giác ABC có AB=BC=AC

=> tam giác ABC đều

=> ABC=ACB=BAC

Tam giác BAD có

DA=DB

=> tam  giác BDA cân tại D

=> DAB=DBA

Lại có

CAD=CAB+BAD

CBD=CBA+ABD

Vì BAC=ABC, BAD=ABD

=> CAD=CBD

=> DPCM

AH
Akai Haruma
Giáo viên
1 tháng 5 2022

Lời giải:
a. $AB=AC=14$ cm nên $ABC$ là tam giác cân tại $A$
Do đó đường phân giác $AD$ đồng thời là đường trung tuyến 

$\Rightarrow BD=DC=\frac{BC}{2}=6$ (cm) 

b. 

$\frac{S_{ABD}}{S_{ACD}}=\frac{BD}{CD}=1$ 

AH
Akai Haruma
Giáo viên
1 tháng 5 2022

Hình vẽ: