Cho ABC vuông tại A, biết AB =3cm; AC =4cm. a) Tính BC.So sánh các cạnh của tam giác ABC b) Vẽ phân giác BD của góc ABC (D thuộc AC),từ D vẽ DE trung điểm BC(E thuộc BC) c) ED cắt AB tại F.Chứng minh tam giác ADF=tam giác EDC d) Chứng minh AB+AF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AB^2=BH\cdot BC\)
\(\Leftrightarrow BH=\dfrac{9^2}{15}=\dfrac{81}{15}=5.4\left(cm\right)\)
Ta có: BH+CH=BC(H nằm giữa B và C)
nên CH=BC-BH=15-5,4=9,6(cm)
b) Ta có: BH+CH=BC(H nằm giữa B và C)
nên BC=1+3=4(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC=1\cdot4=4\left(cm\right)\\AC^2=CH\cdot BC=3\cdot4=12\left(cm\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=2\left(cm\right)\\AC=2\sqrt{3}\left(cm\right)\end{matrix}\right.\)
\(\text{Pytago: }AC=\sqrt{BC^2-AB^2}=4\left(cm\right)\\ \sin B=\dfrac{AC}{BC}=\dfrac{4}{5}\approx\sin53^0\\ \Rightarrow\widehat{B}\approx53^0\\ \Rightarrow\widehat{C}=90^0-\widehat{B}\approx37^0\)
Áp dụng định lí Pytago nên ta có
\(BC^2=AB^2+AC^2=\sqrt{3^2+3^2}\\ =3\sqrt{2}\)
xét tam giác ABC vuông tại A đường cao AH , áp dụng đinh lí Pytago ta có
\(AB^2+AC^2=BC^2< =>BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5cm\)
ta có: \(AH.BC=AB.AC\)(hệ thức lượng tam giác vuông)
=>
\(AH=\dfrac{AB.AC}{BC}=\dfrac{3.4}{5}=\dfrac{12}{5}=2,4cm\)
Xét tam giác ABH vuông tại H, ta có:
AH2 + BH2 = AB2
=> AH2 = 62 - 32
=> AH = \(3\sqrt{3}\) (cm)
Có \(\widehat{BAH}=\widehat{BCA}\) (cùng phụ \(\widehat{HAC}\))
Xét \(\Delta CAH\) và \(\Delta ABH\) có:
+ \(\widehat{BCA}=\widehat{BAH}\)
+ \(\widehat{AHC}=\widehat{BAC}\left(=90^o\right)\)
=> \(\Delta CAH\) \(\sim\) \(\Delta ABH\) (g-g)
=> \(\dfrac{AC}{AH}=\dfrac{AB}{BH}\) => AC = \(6\sqrt{3}\) (cm)
Xét tam giác ABC vuông tại A có AH là đường cao
=> AB2 = BH.BC
=> 62 = 3.BC
=> BC = 12 (cm)
=> CH = 9 (cm)
Hình em tự vẽ ra nhé.
Áp dụng đl pytago vào tam giác vuông ABC có:
AB^2 + AC^2 = BC^2
-- > BC = 5 (cm)
Vì tam giác ABC vuông tại A, AM là đường trung tuyến ứng với cạnh huyền BC nên ta có:
\(AM=\dfrac{1}{2}BC=\dfrac{1}{2}.5=2,5\left(cm\right)\)
Vì G là trọng tâm tâm giác ABC, ta lại có:
\(AG=\dfrac{2}{3}AM=\dfrac{2}{3}.2,5=\dfrac{5}{3}\left(cm\right)\)