Bài 3: Cho tam giác ABC vuông tại A có đường cao AH .Cho biết AB=15cm, AH=12cm
a) Chứng minh tam giác AHB ~ tam giác CHA
b) Tính độ dài đoạn thẳng HB;HC;AC .
c) Trên cạnh AC lấy điểm E sao cho CE=5cm ;trên cạnh BC lấy điểm F sao cho CF=4cm. Chứng minh tam giác CE F vuông.
d) Chứng minh :CE.CA=CF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét tam giác ABH và tam giác CAH ta có :
^AHB = ^CHA = 900
^BAH = ^HCA ( cùng phụ ^HAC )
Vậy tam giác ABH ~ tam giác CAH ( g.g )
b, Xét tam giác ABC vuông tại A, đường cao AH
Áp dụng định lí Pytago cho tam giác AHB vuông tại H
\(AB^2=BH^2+AH^2\Rightarrow BH^2=AB^2-AH^2=225-144=81\Rightarrow BH=9\)cm
* Áp dụng hệ thức :
\(AH^2=BH.HC\Rightarrow HC=\dfrac{AH^2}{BH}=\dfrac{144}{9}=16\)cm
=> BC = HC + HB = 16 + 9 = 25 cm
* Áp dụng hệ thức : \(AH.BC=AB.AC\Rightarrow AC=\dfrac{AH.BC}{AB}=\dfrac{12.25}{15}=20\)cm
a) Xét ΔBHA vuông tại H và ΔAHC vuông tại H có
\(\widehat{BAH}=\widehat{ACH}\left(=90^0-\widehat{B}\right)\)
Do đó: ΔBHA\(\sim\)ΔAHC(g-g)
a) Sửa đề: C/m tam giác AHB đồng dạng với tam giác CHA
Xét ΔAHB vuông tại H và ΔCHA vuông tại H có
\(\widehat{HAB}=\widehat{HCA}\left(=90^0-\widehat{ABC}\right)\)
Do đó: ΔAHB∼ΔCHA(g-g)
a: Xet ΔAHB vuông tại H và ΔCHA vuông tại H có
góc HAB=góc HCA
=>ΔAHB đồng dạng với ΔCHA
b: \(BH=\sqrt{15^2-12^2}=9\left(cm\right)\)
HC=12^2/9=16cm
CA=căn 16*25=20cm
c: CF/CA=4/20=1/5
CE/CB=5/25=1/5
=>CF/CA=CE/CB
=>ΔCFE đồng dạng với ΔCAB
=>góc CFE=90 độ
=>ΔCFE vuông tại F
a) Xét tam giác AHB và tgiac CHA có:
góc AHB = góc CHA = 900
góc HAB = góc HCA (cùng phụ HAC)
suy ra: tgiac AHB ~ tgiac CHA (g.g)
b) Áp dụng Pytago ta có:
AH2 + BH2 = AB2 => BH2 = AB2 - AH2 = 81 => BH = 9
Áp dụng hệ thức lượng ta có:
AB2 = BH.BC => BC = AB2 / BH =25
=> HC = BC - BH = 25 - 9 = 16
Áp dụng hệ thức lượng ta có:
AC2 = HC . BC => AC2 = 400 => AC = 20
c) Xét tgiac CFE và tgiac CAB có:
góc C chung
CF / CA = CE / CB (4/20 = 5/25 )
suy ra: tgiac CFE ~ tgiac CAB (c.g.c)
=> góc CFE = góc CAB = 900
Vậy tgiac CFE vuông tại F
ngủ đi bạn ko ai giải cho đâu
xin lỗi mk mới học lớp 5 thôi nên ko giải được!