K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2018

có tanx = \(\dfrac{\sin x}{\cos x}\)

mà tanx = \(\dfrac{3}{5}\)

=> \(\sin x=\dfrac{3}{5}\cos x\)

=> A= \(\dfrac{\dfrac{3}{5}\cos x+\cos x}{\dfrac{3}{5}\cos x-\cos x}\)

A= \(\dfrac{\cos x(\dfrac{3}{5}+1)}{\cos x(\dfrac{3}{5}-1)}\)

A= \(\dfrac{\dfrac{3}{5}+1}{\dfrac{3}{5}-1}\)

A= -4

17 tháng 4 2018
https://i.imgur.com/ST8Q4WX.jpg
NV
16 tháng 4 2022

a.

\(tana=\dfrac{sina}{cosa}=\dfrac{1}{15}\Rightarrow sina=\dfrac{cosa}{15}\)

\(\Rightarrow sin2a=2sina.cosa=\dfrac{2cosa}{15}.cosa=\dfrac{2}{15}cos^2a=\dfrac{2}{15}.\dfrac{1}{1+tan^2a}=\dfrac{2}{15}.\dfrac{1}{1+\dfrac{1}{15^2}}=\dfrac{15}{113}\)

b.

\(5^2=\left(3sina+4cosa\right)^2\le\left(3^2+4^2\right)\left(sin^2+cos^2a\right)=25\)

Đẳng thức xảy ra khi và chỉ khi: \(\left\{{}\begin{matrix}\dfrac{sina}{3}=\dfrac{cosa}{4}\\3sina+4cosa=5\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}sina=\dfrac{3}{5}\\cosa=\dfrac{4}{5}\end{matrix}\right.\)

NV
16 tháng 4 2022

c.

\(\dfrac{1}{tan^2a}+\dfrac{1}{cot^2a}+\dfrac{1}{sin^2a}+\dfrac{1}{cos^2a}=7\)

\(\Leftrightarrow\dfrac{cos^2a}{sin^2a}+\dfrac{sin^2a}{cos^2a}+\dfrac{1}{sin^2a}+\dfrac{1}{cos^2a}=7\)

\(\)\(\Leftrightarrow\dfrac{sin^4a+cos^4a}{sin^2a.cos^2a}+\dfrac{sin^2a+cos^2a}{sin^2a.cos^2a}=7\)

\(\Leftrightarrow\dfrac{\left(sin^2a+cos^2a\right)^2-2sin^2a.cos^2a}{sin^2a.cos^2a}+\dfrac{1}{sin^2a.cos^2a}=7\)

\(\Leftrightarrow\dfrac{2}{sin^2a.cos^2a}=9\)

\(\Leftrightarrow\dfrac{8}{\left(2sina.cosa\right)^2}=9\)

\(\Leftrightarrow\dfrac{8}{sin^22a}=9\)

\(\Leftrightarrow sin^22a=\dfrac{8}{9}\)

pi/2<a,b<pi

=>cos a<0; cos b<0; sin a>0; sin b>0

\(cosa=-\sqrt{1-\left(\dfrac{3}{5}\right)^2}=-\dfrac{4}{5};sina=\sqrt{1-\left(-\dfrac{5}{13}\right)^2}=\dfrac{12}{13}\)

tan a=-3/5:4/5=-3/4; tan b=12/13:(-5/13)=-12/5

\(tan\left(a+b\right)=\dfrac{tana+tanb}{1-tana\cdot tanb}\)

\(=\dfrac{-\dfrac{3}{4}+\dfrac{-12}{5}}{1-\dfrac{-3}{4}\cdot\dfrac{-12}{5}}=\dfrac{63}{16}\)

sin(a-b)=sina*cosb-sinb*cosa

\(=\dfrac{3}{5}\cdot\dfrac{-5}{13}-\dfrac{-4}{5}\cdot\dfrac{12}{13}=\dfrac{-15+48}{65}=\dfrac{33}{65}\)

NV
28 tháng 4 2021

\(P=\dfrac{\dfrac{sina}{cosa}+\dfrac{cosa}{sina}}{\dfrac{sina}{cosa}-\dfrac{3cosa}{sina}}=\dfrac{sin^2a+cos^2a}{sin^2a-3cos^2a}=\dfrac{1}{sin^2a-3\left(1-sin^2a\right)}=\dfrac{1}{4sin^2a-3}=\dfrac{1}{4.\left(\dfrac{1}{3}\right)^2-3}=...\)

NV
22 tháng 2 2021

\(\pi< x< \dfrac{3\pi}{2}\Rightarrow\left\{{}\begin{matrix}sinx< 0\\cosx< 0\end{matrix}\right.\)

\(\Rightarrow sinx=-\sqrt{1-cos^2x}=-\dfrac{4}{5}\)

\(\Rightarrow tanx=\dfrac{sinx}{cosx}=\dfrac{4}{3}\) ; \(cotx=\dfrac{1}{tanx}=\dfrac{3}{4}\)

\(P=\dfrac{4}{3}+\dfrac{3}{4}=\dfrac{25}{12}\)