Cho hbh ABCDcos đỉnh B(1;5)gọi H là hình chiếu vuông góc của A lên BC.pt đường thẳng AH:x-y-1=0. Tìm toạ độ bà đỉnh A,D,C.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Viết phương trình các cạnh còn lại của hình bình hành.
\(I\left(3;5\right)\)
Giả sử hình bình hành có cạnh \(\left\{{}\begin{matrix}AB:x+3y-6=0\\AD:2x-5y-1=0\end{matrix}\right.\)
Khi đó ta có tọa độ điểm A là nghiệm của hệ phương trình: \(\left\{{}\begin{matrix}x+3y-6=0\\2x-5y-1=0\end{matrix}\right.\rightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\rightarrow A\left(3;1\right)\) Ta có: \(I\left(3;5\right)\) là tâm của hình bình hành \(\rightarrow I\) là trung điểm của \(AC\rightarrow C\left(3;9\right)\) Ta có: \(\left\{{}\begin{matrix}BC//AD\rightarrow BC:2x-5y+a=0\left(x\ne-1\right)\\DC//AB:x+3y+b=0\left(x\ne-6\right)\end{matrix}\right.\) Lại có: \(\left\{{}\begin{matrix}C\in BC\\C\in DC\end{matrix}\right.\rightarrow\left\{{}\begin{matrix}2.3-5.9+a=0\\3+3.9+b=0\end{matrix}\right.\rightarrow\left\{{}\begin{matrix}a=39\left(TM\right)\\b=-30\left(TM\right)\end{matrix}\right.\) \(\rightarrow\left\{{}\begin{matrix}BC:2x-5y+39=0\\DC:x+3y-30=0\end{matrix}\right.\)b) Tìm tọa độ các đỉnh của hình bình hành.
Ta có: tọa độ đỉnh B là nghiệm của hệ phương trình:
\(\left\{{}\begin{matrix}2x-5y+39=0\\x+3y-1=0\end{matrix}\right.\rightarrow\left\{{}\begin{matrix}x=-\frac{87}{11}\\y=\frac{51}{11}\end{matrix}\right.\rightarrow B\left(-\frac{87}{11};\frac{11}{51}\right)\)
Ta có: tọa độ đỉnh D là nghiệm của hệ phương trình:
\(\left\{{}\begin{matrix}2x-5y-1=0\\x+3y-30=0\end{matrix}\right.\rightarrow\left\{{}\begin{matrix}x=\frac{153}{11}\\y=\frac{59}{11}\end{matrix}\right.\rightarrow D\left(\frac{153}{11};\frac{59}{11}\right)\)
c) Viết các phương trình đường chéo của hình bình hành.
Gọi phương trình đường chéo \(AC:y=a_1x+b_1\)
Đường chéo AC đi qua \(A,C\rightarrow x=3\)
Gọi phương trình đường chéo \(BD:y=a_2x+b_2\)
Đường chéo BD đi qua \(B,I\rightarrow\left\{{}\begin{matrix}\frac{51}{11}=-\frac{87}{11}a_2+b_2\\5=3a_2+b_2\end{matrix}\right.\rightarrow\left\{{}\begin{matrix}a_2=\frac{1}{30}\\b_2=\frac{49}{30}\end{matrix}\right.\)
\(\rightarrow BD:y=\frac{1}{30}x+\frac{49}{10}\)
\(\overrightarrow{GB}=\left(4;\dfrac{28}{3}\right)\)
Gọi \(D\left(x;y\right)\) \(\Rightarrow\overrightarrow{DG}=\left(-x;-\dfrac{13}{3}-y\right)\)
Gọi O là tâm hbh \(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{DG}=\dfrac{2}{3}\overrightarrow{DO}\\\overrightarrow{DO}=\overrightarrow{OB}\end{matrix}\right.\)
\(\Rightarrow\overrightarrow{DG}=\dfrac{1}{3}\overrightarrow{DB}=\dfrac{1}{2}\overrightarrow{GB}\)
\(\Rightarrow\left\{{}\begin{matrix}-x=\dfrac{1}{2}.4\\-\dfrac{13}{3}-y=\dfrac{1}{2}.\dfrac{28}{3}\end{matrix}\right.\) \(\Rightarrow D\left(-2;-9\right)\)
bạn ơi đáp án của nó là D(-2;-9). bạn giúp mk giải vs
Câu 1:
Ta có: \(\overrightarrow{MA}-\overrightarrow{MB}+\overrightarrow{MC}=\overrightarrow{0}\) \(\Leftrightarrow\overrightarrow{BA}+\overrightarrow{MC}=\overrightarrow{0}\) \(\Leftrightarrow\overrightarrow{AB}=\overrightarrow{MC}\)
\(\Rightarrow\left\{{}\begin{matrix}AB//MC\\AB=MC\end{matrix}\right.\)\(\Rightarrow M\) là đỉnh thứ 4 của hbh ABCM
=> D đúng
Câu 2 :
Tam giác ABC vuông tại B, áp dụng Pytago:
\(AC=\sqrt{AB^2+BC^2}=a\sqrt{2}\)
Ta có: \(\left|\overrightarrow{AB}-\overrightarrow{DA}\right|=\left|\overrightarrow{AB}+\overrightarrow{AD}\right|=\left|\overrightarrow{AB}+\overrightarrow{BC}\right|=\left|\overrightarrow{AC}\right|=AC=a\sqrt{2}\)
=> C đúng
Do ABCD là hbh \(\Rightarrow\overrightarrow{AI}=\overrightarrow{IC}=\frac{1}{2}\overrightarrow{AC}\Rightarrow\overrightarrow{AN}=\frac{1}{2}\overrightarrow{AI}=\frac{1}{4}\overrightarrow{AC}\)
Gọi \(A\left(x;y\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AN}=\left(-3-x;2-y\right)\\\overrightarrow{AC}=\left(3-x;-y\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}-3-x=\frac{1}{4}\left(3-x\right)\\2-y=\frac{1}{4}\left(-y\right)\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-5\\y=\frac{8}{3}\end{matrix}\right.\) \(\Rightarrow A\left(-5;\frac{8}{3}\right)\)
G là trọng tâm ABC \(\Rightarrow\left\{{}\begin{matrix}x_B=3x_G-x_A-x_C=5\\y_B=3y_G-y_A-y_C=\frac{1}{3}\end{matrix}\right.\)
ABCD là hbh \(\Rightarrow\overrightarrow{AB}=\overrightarrow{DC}\Rightarrow D...\)
Gọi \(D\left(x;y\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AB}=\left(4;4\right)\\\overrightarrow{DC}=\left(4-x;-1-y\right)\end{matrix}\right.\)
Do \(\overrightarrow{AB}=\overrightarrow{DC}\Rightarrow\left\{{}\begin{matrix}4-x=4\\-1-y=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=0\\y=-5\end{matrix}\right.\) \(\Rightarrow D\left(0;-5\right)\)
b/ Gọi pt AB có dạng \(y=ax+b\Rightarrow\left\{{}\begin{matrix}-a+b=-2\\3a+b=2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=1\\b=-1\end{matrix}\right.\) \(\Rightarrow y=x-1\)
Giao với Ox: \(y=0\Rightarrow x=1\Rightarrow\left(1;0\right)\)
c/ Của đường thẳng y=2 với cái gì bạn?