K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2018

20 tháng 8 2019

28 tháng 1 2019

19 tháng 2 2018

9 tháng 8 2017

Đáp án C

Đặt t = log 2 x  với x ∈ 0 ; + ∞  thì t ∈ ℝ , khi đó bất phương trình trở thành  t 2 + m t - m > 0 *

Để (*) nghiệm đúng với mọi t ∈ ℝ ⇔ ∆ * ≤ 0 ⇔ m 2 + 4 m ≤ 0 ⇔ m ∈ - 4 ; 0  

Vậy có 5 giá trị nguyên của m thỏa mãn điều kiện

13 tháng 3 2019

22 tháng 5 2018

NV
29 tháng 7 2021

3.

\(y'=\dfrac{3m-1}{\left(x+3m\right)^2}\)

Hàm nghịch biến trên khoảng đã cho khi:

\(\left\{{}\begin{matrix}3m-1< 0\\-3m\le6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< \dfrac{1}{3}\\m\ge-2\end{matrix}\right.\)

\(\Rightarrow-2\le m< \dfrac{1}{3}\Rightarrow m=\left\{-2;-1;0\right\}\)

4.

\(y'=\dfrac{3m-2}{\left(x+3m\right)^2}\)

Hàm đồng biến trên khoảng đã cho khi:

\(\left\{{}\begin{matrix}3m-2>0\\-3m\ge-6\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>\dfrac{2}{3}\\m\le2\end{matrix}\right.\)

\(\Rightarrow\dfrac{2}{3}< m\le2\Rightarrow m=\left\{1;2\right\}\)

AH
Akai Haruma
Giáo viên
19 tháng 12 2021

Lời giải:
Để $(m^2-4)x=m(m-2)$ có nghiệm duy nhất thì $m^2-4\neq 0$

$\Leftrightarrow (m-2)(m+2)\neq 0$
$\Leftrightarrow m\neq \pm 2$
Mà $m$ nguyên và $m\in [-5;5]$ nên $m\in\left\{-5; -4; -3; -1; 0; 1;3;4;5\right\}$

16 tháng 4 2019

Chọn D.

Đặt   khi đó phương trình tương đương với: t2 - 6t + m 3 = 0 (*)

Để phương trình đã cho có 4 nghiệm phân biệt khi (*) có 2 nghiệm dương phân biệt lớn hơn 1.