Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1;1;1), B(0;1;2), C(-2;1;4) và mặt phẳng (P): x-y+z+2=0. Tìm điểm N ∈ (P) sao cho S = 2 N A 2 + N B 2 + N C 2 đạt giá trị nhỏ nhất.
A. N(-2;0;1)
B. N - 4 3 ; 2 ; 4 3
C. N - 1 2 ; 5 4 ; 3 4
D. N(-1;2;1)
Đáp án D
Phương pháp giải: Xét đẳng thức vectơ, đưa về hình chiếu của điểm trên mặt phẳng
Lời giải:
Gọi M(a;b;c) thỏa mãn đẳng thức vectơ
=2(1-a;1-b;1-c)+(0-a; 1-b;2-c)+(-2-1;1-b;4-c)=0
Khi đó
<=> N là hình chiếu của M trên (P) =>MN ⊥ (P)
Phương trình đường thẳng MN là