Viết phương trình mặt phẳng (P) đi qua điểm M(1;2;3) và cắt các trục tọa độ lần lượt tại A, B, C ở phần dương khác gốc O sao cho thể tích tứ diện OABC nhỏ nhất
A. (P): 6x+3y+2z-18=0
B. (P): 6x+3y+2z+18=0
C. (P): 6x-3y-2z-8=0
D. (P): 6x-3y-2z+8=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn C.
Mặt phẳng (P) song song với mặt phẳng (Q):2x - 3z + 1 = 0 nên mặt phẳng (P) có phương trình dạng: 2x - 3z + D = 0 (D ≠ 1).
Mặt phẳng (P) đi qua điểm M nên thay tọa độ điểm vào phương trình mặt phẳng (P) ta được:
2.0 - 3.3 + D = 0 ⇔ D = 9 (thỏa mãn D ≠ 1).
Vậy phương trình mặt phẳng (P) là: 2x - 3z + 9 = 0.
Chọn B
Mặt phẳng (P) song song với mặt phẳng (Q): 2x – 3z + 1 = 0 nên mặt phẳng (P) có phương trình dạng: .
Mặt phẳng (P) đi qua điểm M(0;1;3) nên thay tọa độ điểm vào phương trình mặt phẳng (P) Ta được: 2.0 -3.3 + D = 0 ⇔ D = 9 (thỏa mãn D ≠ 1).
Vậy phương trình mặt phẳng (P) là: 2x – 3z + 9 = 0.
Vì mặt phẳng (α) song song với mặt phẳng ( β) : 2x – y + 3z + 4 = 0 nên phương trình của mp(α) có dạng 2x – y + 3z + D = 0
Vì M(2; -1; 2) ∈ mp(α) nên 4 + 1 + 6 + D = 0 <=> D = -11
Vậy phương trình của mp(α) là: 2x – y + 3z - 11= 0
Mặt phẳng ( β ) song song với trục Oy và vuông góc với mặt phẳng ( α ):
2x – y + 3z + 4 = 0, do đó hai vecto có giá song song hoặc nằm trên ( β ) là: j → = (0; 1; 0) và n α → = (2; −1; 3)
Suy ra ( β ) có vecto pháp tuyến là n β → = j → ∧ n α → = (3; 0; −2)
Mặt phẳng ( β ) đi qua điểm M(2; -1; 2) có vecto pháp tuyến là: n β → = (3; 0; −2)
Vậy phương trình của ( β ) là: 3(x – 2) – 2(z – 2) = 0 hay 3x – 2z – 2 = 0
Chọn D
nên mặt phẳng (P) nhận
và (P) đi qua điểm M(-1;-2;5) nên có phương trình là:
1 ( x + 1 ) + 1 ( y + 2 ) + 1 ( z - 5 ) = 0 h a y x + y + z - 2 = 0 .
Chọn D
nên mặt phẳng (P) nhận
và (P) đi qua điểm M(-1;-2;5) nên có phương trình là:
1 ( x + 1 ) + 1 ( y + 2 ) + 1 ( z - 5 ) = 0 h a y x + y + z - 2 = 0 .
vì mặt phẳng (P) vuông góc với Ox nên (P) nhận vectơ chỉ phương đơn vị \(\overrightarrow{i}\)=(1.0.0) của Ox làm vectơ pháp tuyến. do đó (P) có phương trình
x-1=0
Mặt phẳng đi qua điểm M(1; -2; 4) và nhận n → = (2; 3; 5) làm vectơ pháp tuyến là:
2(x – 1) + 3(y + 2) + 5(z – 4) = 0
⇔ 2x + 3y + 5z – 16 = 0.