Cho điểm M (m − 1; 2m + 1), điểm M luôn nằm trên đường thẳng cố đinh nào dưới đây ?
A. x – y – 3 = 0
B. 2x – y – 3 = 0
C. 2x – y + 3 = 0
D. Đáp án khác
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay tọa độ P, Q vào phương trình \(\Delta\) ta được 2 giá trị cùng dấu \(\Rightarrow\) P, Q nằm cùng phía so với \(\Delta\)
Gọi A là điểm đối xứng với \(P\) qua \(\Delta\Rightarrow AM=PM\)
\(\Rightarrow MP+MQ=AM+MQ\ge AQ\)
Dấu "=" xảy ra khi và chỉ khi A, M, Q thẳng hàng hay M là giao điểm AQ và \(\Delta\)
Phương trình đường thẳng d qua P và vuông góc \(\Delta\) có dạng:
\(1\left(x-1\right)+2\left(y-6\right)=0\Leftrightarrow x+2y-13=0\)
Tọa độ giao điểm H giữa d và \(\Delta\) là nghiệm: \(\left\{{}\begin{matrix}2x-y-1=0\\x+2y-13=0\end{matrix}\right.\) \(\Rightarrow H\left(3;5\right)\)
A đối xứng P qua \(\Delta\) khi và chỉ khi H là trung điểm AP \(\Rightarrow A\left(5;4\right)\)
\(\Rightarrow\overrightarrow{QA}=\left(8;8\right)=8\left(1;1\right)\Rightarrow\) đường thẳng AQ nhận (1;-1) là 1 vtpt
Phương trình AQ:
\(1\left(x+3\right)-1\left(y+4\right)=0\Leftrightarrow x-y-1=0\)
Tọa độ M là nghiệm: \(\left\{{}\begin{matrix}x-y-1=0\\2x-y-1=0\end{matrix}\right.\) \(\Rightarrow M\left(0;-1\right)\)
Gọi tọa độ M(x;y;z)
Ta có: \(\overrightarrow{AB}\) = (2; -2; -8)
\(\overrightarrow{AM}\)=( x+1; y-2; z-3)
A, B, M thẳng hàng khi: \(\left[\overrightarrow{AB};\overrightarrow{AM}\right]\)=\(\overrightarrow{0}\) ⇔ \(\left\{{}\begin{matrix}-2z+8y-10=0\\-8x-2z-2=0\\2y+2x-2=0\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=0\\y=1\\z=-1\end{matrix}\right.\)
=> Câu D đúng
Đáp án B
Đường thẳng AB: qua A 0 ; 4 ; 1 vtcp u → = AB → = − 1 ; − 2 ; − 2 ⇒ AB : x = t y = 4 + 2 t z = 1 + 2 t
Gọi H là hình chiếu vuông góc của điểm M trên đường thẳng AB.
H là trung điểm của MM’ nên M ' − 19 9 ; 13 9 ; − 8 9 .
Vậy tổng tọa độ của điểm M’ là: − 14 9 .
H là trung điểm của MM’, suy ra x M ' + x M = 2 x H
Suy ra
Tương tự, ta được
Vậy
Đáp án C