Cho đa thức \(P
\left(x\right)\) có bậc là 2020 thỏa mãn \(P\left(k\right)=\dfrac{k}{k+1}\) với \(k\in\left\{0;1;2;3;.....;2020\right\}\). Tính \(P\left(2021\right)=?\)
#định_lý_BéZout
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(f\left[f\left(x\right)+x\right]=\left[f\left(x\right)+x\right]^2+m\left[f\left(x\right)+x\right]+n\)
\(=\left(x^2+mx+n+x\right)^2+m\left(x^2+mx+n+x\right)+n\)
\(=\left(x^2+mx+n\right)^2+2x\left(x^2+mx+n\right)+x^2+m\left(x^2+mx+n\right)+mx+n\)
\(=\left(x^2+mx+n\right)^2+2x\left(x^2+mx+n\right)+m\left(x^2+mx+n\right)+\left(x^2+mx+n\right)\)
\(=\left(x^2+mx+n\right)\left(x^2+mx+n+2x+m+1\right)\)
\(=\left(x^2+mx+n\right)\left[\left(x+1\right)^2+m\left(x+1\right)+n\right]\)
\(=f\left(x\right).f\left(x+1\right)\)
Thay \(x=2021\)
\(\Rightarrow f\left[f\left(2021\right)+2021\right]=f\left(2021\right).f\left(2022\right)\)
Đặt \(f\left(2021\right)+2021=k\)
Do \(f\left(x\right)\) có hệ số m;n nguyên \(\Rightarrow k\) nguyên
\(\Rightarrow f\left(k\right)=f\left(2021\right).f\left(2022\right)\) với k nguyên
Hay tồn tại số nguyên k thỏa mãn yêu cầu
Từ giả thiết ta có \(P\left(k\right).\left(k+1\right)=k\)
Đặt \(Q\left(x\right)=\left(x+1\right).P\left(x\right)-x\)
Khi đó \(Q\left(k\right)=\left(k+1\right).P\left(k\right)-k=0\) thỏa mãn với mọi \(k\in\left\{0;1;2;3;4;.............;2020\right\}\)
Theo định lý Bézout ta có
\(Q\left(x\right)=x.\left(x-1\right).\left(x-2\right).\left(x-3\right)....\left(x-2020\right).R\left(x\right)\)
Vì đa thức \(P\left(x\right)\) có bậc là 2020 nên đa thức \(Q\left(x\right)\) có bậc là 2021.
Suy ra đa thức \(R\left(x\right)\) có bậc là 0 , hay còn gọi là đa thức \(R\left(x\right)\) không chứa biến số.
Đặt \(R\left(x\right)=a\) với \(a\in R\)
Khi đó đa thức \(Q\left(x\right)\) có dạng như sau :
\(Q\left(x\right)=a.x.\left(x-1\right).\left(x-2\right).\left(x-3\right)....\left(x-2020\right)\)
Mặt khác , ta lại có
\(Q\left(x\right)=\left(x+1\right).P\left(x\right)-x\)
Thay \(x=-1\) ta có \(Q\left(-1\right)=1\)
Suy ra \(a.\left(-1\right).\left(-2\right).\left(-3\right).\left(-4\right).....\left(-2021\right)=1\)
Suy ra \(a=\dfrac{-1}{2021!}\)
Khi đó đa thức \(Q\left(x\right)\) có dạng như sau :
\(Q\left(x\right)=\dfrac{-1}{2021!}.x.\left(x-1\right).\left(x-2\right).\left(x-3\right)....\left(x-2020\right)\)
Mặt khác ta lại có \(Q\left(x\right)=\left(x+1\right).P\left(x\right)-x\)
Thay \(x=2021\) ta có
\(Q\left(2021\right)=2022.P\left(2021\right)-2021\)
\(\Rightarrow\dfrac{-1}{2021!}.2021.2020.....1=2022.P\left(2021\right)-2021\)
\(\Rightarrow-1=2022.P\left(2021\right)-2021\)
\(\Rightarrow P\left(2021\right)=\dfrac{1010}{1011}\)
tự hỏi tự trả lời ????