K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2020

B C A D E H I

(Chỉ mang t/c minh họa)

1/ Ta có I là trung điểm của AH (gt)

=> AI = AH = 1/2 AH (1)

BD _|_ AC tại D và H thuộc BC (gt)

=> △ABD vuông tại A

Xét △AHD vuông tại D có I là trung điểm của AH

=> DI = 1/2 AH (2)

Cmtt ta có : EI = 1/2 AH (3)

Từ (1)(2)(3) => AI = HI = DI = EI

=> 4 điểm A,D,H,E cùng thuộc 1 đtròn(I)

2/ Ta có : BD _|_ AC tại D (gt)

=> ^BDC = 90o

Cmtt ta có : ^BEC = 90o 

=> ^BDC = ^BEC = 90o

=> 4 điểm B,E,D,C cùng thuộc 1 đtròn

a) Xét tứ giác AOCM có 

\(\widehat{MAO}\) và \(\widehat{MCO}\) là hai góc đối

\(\widehat{MAO}+\widehat{MCO}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: AOCM là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

nên A,O,C,M cùng nằm trên một đường tròn(đpcm)

24 tháng 4 2023

\(PT\left(T\right)\) có dạng \(x^2+y^2-2ax-2by+c=0\)

\(\left\{{}\begin{matrix}A\left(-1;2\right)\in\left(T\right)\\B\left(1;2\right)\in\left(T\right)\\C\left(2;-3\right)\in\left(T\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(-1\right)^2+2^2+2a-4b+c=0\\1^2+2^2-2a-4b+c=0\\2^2+\left(-3\right)^2-4a+6b+c=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2a-4b+c=-5\\-2a-4b+c=-5\\-4a+6b+c=-13\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=0\\b=-\dfrac{4}{5}\\c=-\dfrac{41}{5}\end{matrix}\right.\)

\(\Rightarrow\)Tâm \(I\left(0;-\dfrac{4}{5}\right)\)

23 tháng 5 2023

(a) Gọi \(O'\) là tâm đường tròn ngoại tiếp tứ giác \(AIFE.\)

Ta có : \(\hat{IEF}=\hat{IAF}\) (\(AIFE\) nội tiếp đường tròn \(\left(O'\right)\)) hay \(\hat{IEF}=\hat{IAB}.\)

Mà : \(\hat{IAB}=\hat{ICB}\) (hai góc nội tiếp đường tròn \(\left(O\right)\) cùng chắn cung \(IB\)).

Do đó, \(\hat{IEF}=\hat{ICB}.\)

Ta cũng có : \(\hat{FIE}=\hat{FAE}\) (\(AIFE\) nội tiếp đường tròn \(\left(O'\right)\)) hay \(\hat{FIE}=\hat{BAC}.\)

Mà : \(\hat{BAC}=\hat{BIC}\) (hai góc nội tiếp đường tròn \(\left(O\right)\) cùng chắn cung \(BC\)).

Do đó, \(\hat{FIE}=\hat{BIC}.\)

Xét \(\Delta IBC,\Delta IFE:\left\{{}\begin{matrix}\hat{ICB}=\hat{IEF}\left(cmt\right)\\\hat{BIC}=\hat{FIE}\left(cmt\right)\end{matrix}\right.\Rightarrow\Delta IBE\sim\Delta IFE\left(g.g\right)\) (đpcm).

 

(b) Mình tạm thời chưa nghĩ ra nhé:)

1 tháng 6 2021

a) Vì AB là đường kính \(\Rightarrow\angle AEC=90\) mà \(\angle MOC=90\Rightarrow OMEC\) nội tiếp

b) Xét \(\Delta AMO\) và \(\Delta ACE:\) Ta có: \(\left\{{}\begin{matrix}\angle AOM=\angle AEC=90\\\angle CAEchung\end{matrix}\right.\)

\(\Rightarrow\Delta AMO\sim\Delta ACE\Rightarrow\dfrac{AM}{AO}=\dfrac{AC}{AE}\Rightarrow AM.AE=AO.AC=2R^2\)

Ta có: \(CD^2=CO^2+OD^2=2R^2\Rightarrow AM.AE+CD^2=4R^2\)

c) \(\Delta AMO\sim\Delta ACE\Rightarrow\dfrac{AC}{AE}=\dfrac{AM}{AO}=\dfrac{1}{2}=\dfrac{AD}{DN}\)

Xét \(\Delta ADN\) và \(\Delta AEC:\) Ta có: \(\left\{{}\begin{matrix}\angle ADN=\angle AEC=90\\\dfrac{AC}{AE}=\dfrac{AD}{DN}\end{matrix}\right.\)

\(\Rightarrow\Delta ADN\sim\Delta AEC\Rightarrow\angle AND=\angle ACE=\angle AMO\Rightarrow AMND\) nội tiếp

mà \(\angle ADN=90\Rightarrow\angle AMN=90\Rightarrow NM\bot AE\) mà \(CE\bot AE\)

\(\Rightarrow MN\parallel CE\)

d) Ta có: \(AM=\sqrt{AO^2+OM^2}=\dfrac{\sqrt{5}}{2}R\)

\(\Delta AMO\sim\Delta ACE\Rightarrow\dfrac{AE}{AC}=\dfrac{AO}{AM}=\dfrac{R}{\dfrac{\sqrt{5}}{2}R}=\dfrac{2}{\sqrt{5}}\)

\(\Rightarrow AE=\dfrac{4}{\sqrt{5}}R\)

AMND nt \(\Rightarrow\angle MAN=\angle MDN=\angle MDA=\angle MNA\Rightarrow\Delta MAN\) vuông cân tại M \(\Rightarrow MN=MA=\dfrac{\sqrt{5}}{2}R\)

Ta có: \(S_{ANE}=\dfrac{1}{2}NM.AE=\dfrac{1}{2}.\dfrac{\sqrt{5}}{2}R.\dfrac{4}{\sqrt{5}}R=R^2\)

về ý tưởng cơ bản là vậy,còn mình có tính toán gì sai thì bạn sửa nhé