a. Lập pt của đtròn(C) tâm I(4;2) tiếp xúc với đg thẳng 3x+4y+5=0
b. Viết pt tiếp tuyến của đtròn(C) song song với trục Oy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(Chỉ mang t/c minh họa)
1/ Ta có I là trung điểm của AH (gt)
=> AI = AH = 1/2 AH (1)
BD _|_ AC tại D và H thuộc BC (gt)
=> △ABD vuông tại A
Xét △AHD vuông tại D có I là trung điểm của AH
=> DI = 1/2 AH (2)
Cmtt ta có : EI = 1/2 AH (3)
Từ (1)(2)(3) => AI = HI = DI = EI
=> 4 điểm A,D,H,E cùng thuộc 1 đtròn(I)
2/ Ta có : BD _|_ AC tại D (gt)
=> ^BDC = 90o
Cmtt ta có : ^BEC = 90o
=> ^BDC = ^BEC = 90o
=> 4 điểm B,E,D,C cùng thuộc 1 đtròn
a) Xét tứ giác AOCM có
\(\widehat{MAO}\) và \(\widehat{MCO}\) là hai góc đối
\(\widehat{MAO}+\widehat{MCO}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: AOCM là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
nên A,O,C,M cùng nằm trên một đường tròn(đpcm)
\(PT\left(T\right)\) có dạng \(x^2+y^2-2ax-2by+c=0\)
\(\left\{{}\begin{matrix}A\left(-1;2\right)\in\left(T\right)\\B\left(1;2\right)\in\left(T\right)\\C\left(2;-3\right)\in\left(T\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(-1\right)^2+2^2+2a-4b+c=0\\1^2+2^2-2a-4b+c=0\\2^2+\left(-3\right)^2-4a+6b+c=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2a-4b+c=-5\\-2a-4b+c=-5\\-4a+6b+c=-13\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=0\\b=-\dfrac{4}{5}\\c=-\dfrac{41}{5}\end{matrix}\right.\)
\(\Rightarrow\)Tâm \(I\left(0;-\dfrac{4}{5}\right)\)
(a) Gọi \(O'\) là tâm đường tròn ngoại tiếp tứ giác \(AIFE.\)
Ta có : \(\hat{IEF}=\hat{IAF}\) (\(AIFE\) nội tiếp đường tròn \(\left(O'\right)\)) hay \(\hat{IEF}=\hat{IAB}.\)
Mà : \(\hat{IAB}=\hat{ICB}\) (hai góc nội tiếp đường tròn \(\left(O\right)\) cùng chắn cung \(IB\)).
Do đó, \(\hat{IEF}=\hat{ICB}.\)
Ta cũng có : \(\hat{FIE}=\hat{FAE}\) (\(AIFE\) nội tiếp đường tròn \(\left(O'\right)\)) hay \(\hat{FIE}=\hat{BAC}.\)
Mà : \(\hat{BAC}=\hat{BIC}\) (hai góc nội tiếp đường tròn \(\left(O\right)\) cùng chắn cung \(BC\)).
Do đó, \(\hat{FIE}=\hat{BIC}.\)
Xét \(\Delta IBC,\Delta IFE:\left\{{}\begin{matrix}\hat{ICB}=\hat{IEF}\left(cmt\right)\\\hat{BIC}=\hat{FIE}\left(cmt\right)\end{matrix}\right.\Rightarrow\Delta IBE\sim\Delta IFE\left(g.g\right)\) (đpcm).
(b) Mình tạm thời chưa nghĩ ra nhé:)
a) Vì AB là đường kính \(\Rightarrow\angle AEC=90\) mà \(\angle MOC=90\Rightarrow OMEC\) nội tiếp
b) Xét \(\Delta AMO\) và \(\Delta ACE:\) Ta có: \(\left\{{}\begin{matrix}\angle AOM=\angle AEC=90\\\angle CAEchung\end{matrix}\right.\)
\(\Rightarrow\Delta AMO\sim\Delta ACE\Rightarrow\dfrac{AM}{AO}=\dfrac{AC}{AE}\Rightarrow AM.AE=AO.AC=2R^2\)
Ta có: \(CD^2=CO^2+OD^2=2R^2\Rightarrow AM.AE+CD^2=4R^2\)
c) \(\Delta AMO\sim\Delta ACE\Rightarrow\dfrac{AC}{AE}=\dfrac{AM}{AO}=\dfrac{1}{2}=\dfrac{AD}{DN}\)
Xét \(\Delta ADN\) và \(\Delta AEC:\) Ta có: \(\left\{{}\begin{matrix}\angle ADN=\angle AEC=90\\\dfrac{AC}{AE}=\dfrac{AD}{DN}\end{matrix}\right.\)
\(\Rightarrow\Delta ADN\sim\Delta AEC\Rightarrow\angle AND=\angle ACE=\angle AMO\Rightarrow AMND\) nội tiếp
mà \(\angle ADN=90\Rightarrow\angle AMN=90\Rightarrow NM\bot AE\) mà \(CE\bot AE\)
\(\Rightarrow MN\parallel CE\)
d) Ta có: \(AM=\sqrt{AO^2+OM^2}=\dfrac{\sqrt{5}}{2}R\)
\(\Delta AMO\sim\Delta ACE\Rightarrow\dfrac{AE}{AC}=\dfrac{AO}{AM}=\dfrac{R}{\dfrac{\sqrt{5}}{2}R}=\dfrac{2}{\sqrt{5}}\)
\(\Rightarrow AE=\dfrac{4}{\sqrt{5}}R\)
AMND nt \(\Rightarrow\angle MAN=\angle MDN=\angle MDA=\angle MNA\Rightarrow\Delta MAN\) vuông cân tại M \(\Rightarrow MN=MA=\dfrac{\sqrt{5}}{2}R\)
Ta có: \(S_{ANE}=\dfrac{1}{2}NM.AE=\dfrac{1}{2}.\dfrac{\sqrt{5}}{2}R.\dfrac{4}{\sqrt{5}}R=R^2\)
về ý tưởng cơ bản là vậy,còn mình có tính toán gì sai thì bạn sửa nhé