K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2020

Gọi M là trung điểm AB 

=> IM vuông góc AB 

Ta có: AM = MB = AB : 2 = 4 cm 

IM = d( I; d) = \(\frac{3.1+4.2+4}{\sqrt{3^2+4^2}}=3\)  cm 

Tam giác IMA vuông tại M 

=> R = IA = \(\sqrt{3^2+4^2}=5\)

=> Phương trình đường tròn cần tìm: ( x - 1)^2 + ( y - 2)^2 = 25

15 tháng 5 2019

26 tháng 3 2022

gọi H là trung điểm AB

=> \(IH=d_{\left(I,\Delta\right)}=\dfrac{\left|3\cdot2+4\cdot\left(-1\right)+3\right|}{\sqrt{3^2+4^2}}=1\)

\(S_{\Delta IAB}=2\cdot\left(\dfrac{1}{2}\cdot IH\cdot HA\right)=4\)

\(IH\cdot IA=4\Leftrightarrow1\cdot HA=4\Rightarrow HA=4\)

\(\Rightarrow R=IA=\sqrt{IH^2+HA^2}=\sqrt{1^2+4^2}=\sqrt{17}\)

\(\Rightarrow\) Phương trình đường tròn (x-2)2 +(y+1)2=17

26 tháng 12 2019

NV
30 tháng 4 2019

(C) có tâm \(I\left(1;1\right)\) bán kính \(R=2\)

\(\Delta//d\Rightarrow\) phương trình \(\Delta\) có dạng: \(3x-4y+c=0\)

Áp dụng định lý Pitago: \(d\left(I;\Delta\right)=\sqrt{R^2-\left(\frac{AB}{2}\right)^2}=1\)

\(\Rightarrow\frac{\left|3.1-4.1+c\right|}{\sqrt{3^2+4^2}}=1\Leftrightarrow\left|c-1\right|=5\Rightarrow\left[{}\begin{matrix}c=6\\c=-4\end{matrix}\right.\)

Có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}3x-4y+6=0\\3x-4y-4=0\end{matrix}\right.\)

NV
30 tháng 4 2019

Do tính chất của đường tròn nên luôn có 2 đường thẳng đối xứng nhau qua tâm đường tròn thỏa mãn điều kiện bài toán, kiểu như trên hình, 2 dây cung cắt bởi 2 đường thẳng đối xứng qua tâm luôn dài bằng nhau

Chắc chắn cả 2 đáp án đều đúng, ko cái nào sai cả, nếu trong phương án chọn chỉ có 2 đáp án nằm riêng lẻ thì 1 là đáp án sai, 2 là bạn để ý kĩ lại dấu của 2 đáp án coi, có khi họ cho khác đi 1 chút xíu

2 tháng 8 2019

Đáp án là C