K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2020

Câu 2. Đặt A=x2+y2+1

Nhập \(2^A=\left(A-2x+1\right)4^x\) vào máy tính Casio. Cho x=0.01, tìm A

Máy sẽ giải ra, A=1.02=1+2x

\(\Leftrightarrow x^2+y^2+1=1+2x\)

\(\Leftrightarrow x^2+y^2-2x=1\)

\(\Leftrightarrow\left(x-1\right)^2+y^2=1\) (C)

Có (C) là đường tròn tâm (1,0) bán kính R=1

Lại có: P=\(\frac{8x+4}{2x-y+1}\)

\(\Leftrightarrow x\left(2P-8\right)-yP+P-4=0\) (Q)

Có (Q) là phương trình đường thẳng.

Để x,y có nghiệm thì đường thẳng và đường tròn giao nhau nghĩa là d(I,(Q))\(\le R\)

\(\Leftrightarrow\frac{\left|x\left(2P-8\right)-yP+P-4\right|}{\sqrt{\left(2P-8\right)^2+P^2}}\le1\)

\(\Leftrightarrow\frac{\left|2P-8+P-4\right|}{\sqrt{\left(2P-8\right)^2+1}}\le1\)

\(\Leftrightarrow\left(3P-12\right)^2\le5P^2-32P+64\)

\(\Leftrightarrow4P^2-40P+80\le0\)

\(\Leftrightarrow5-\sqrt{5}\le P\le5+\sqrt{5}\)

Vậy GTNN của P gần số 3 nhất. Chọn C

Bài 1

Để phân số ko tồn tại thì (n-2)(n+1)=0

=>n=2 hoặc n=-1

Bài 4:

Để phân số không tồn tại thì (2n-1)(n2+1)=0

=>2n-1=0

hay n=1/2

NV
12 tháng 1 2021

M thuộc d, quỹ tích những điểm N thỏa mãn \(2\overrightarrow{OM}+\overrightarrow{ON}=\overrightarrow{0}\) là ảnh của d qua phép vị tự tâm O tỉ số \(k=-2\)

\(\Rightarrow\) Quỹ tích N là đường thẳng d' có pt \(x+y-6=0\)

d' không cắt (C)  nên không tồn tại cặp điểm M, N nào thỏa mãn yêu cầu

15 tháng 7 2019

* Với \(m\le2\)thì từ (1) suy ra \(n^3-5n+10=2^m\le2^2\Rightarrow n^3-5n+6\le0\)(2)

Mặt khác do \(n\inℕ^∗\)nên \(n^3-5n+6>0,\)điều này mâu thuẫn với (2). Vậy \(m>2\).

* Với  \(m=3\)thì thay vào (1) ta có: \(n^3-5n+10=2^3\Leftrightarrow\left(n^3-2n^2\right)+\left(2n^2-4n\right)-\left(n+2\right)=0\)

\(\Leftrightarrow\left(n-2\right)\left(n^2+2n-1\right)=0\)

Do \(n\inℕ^∗\)nên \(n^2-2n-1>0,\)suy ra \(n-2=0\Leftrightarrow n=2\)

* Với  \(m\ge4\)thì biến đổi (1) thành \(\left(n-2\right)\left(n^2+2n-1\right)=8\left(2^{m-3}-1\right)\)(3)

Nhận thấy: \(\left(n^2+2n-1\right)-\left(n-2\right)=n^2+n+1=n\left(n+1\right)+1\)là số lẻ và \(n\inℕ^∗\),

nên hai số \(n^2+2n-1\)và \(n-2\)là hai số tự nhiên khác tính chẵn lẻ. Do đó từ (3) xảy ra 2 khả năng

a)\(\hept{\begin{cases}n-2=8\\n^2+2n-1=2^{m-3}-1\end{cases}\Leftrightarrow}\hept{\begin{cases}n=10\\2^{m-3}=120\end{cases}}\)

Vì  \(2^{m-3}\)là số tự nhiên có số tận cùng khác 0 nên \(2^{m-3}\ne120\). Do vậy trường hợp này không xảy ra.

b)\(\hept{\begin{cases}n-2=2^{m-3}-1\\n^2+2n-1=8\end{cases}\Leftrightarrow}\hept{\begin{cases}2^{m-3}=n-1\\n^2+2n-9=0\end{cases}}\)

Do phương trình \(n^2+2n-9=0\)không có nghiệm tự nhiên nên trường hợp này cũng không xảy ra. 

Vậy có một cặp số nguyên dương duy nhất thỏa mãn là \(\left(m;n\right)=\left(3;2\right).\)

Cách khác : còn có thể xét các trường hợp của \(n\left(n=1;n\ge2\right)\)trước sau đó mới xét \(m\).

NV
25 tháng 3 2022

Xét \(f\left[f\left(x\right)+x\right]=\left[f\left(x\right)+x\right]^2+m\left[f\left(x\right)+x\right]+n\)

\(=\left(x^2+mx+n+x\right)^2+m\left(x^2+mx+n+x\right)+n\)

\(=\left(x^2+mx+n\right)^2+2x\left(x^2+mx+n\right)+x^2+m\left(x^2+mx+n\right)+mx+n\)

\(=\left(x^2+mx+n\right)^2+2x\left(x^2+mx+n\right)+m\left(x^2+mx+n\right)+\left(x^2+mx+n\right)\)

\(=\left(x^2+mx+n\right)\left(x^2+mx+n+2x+m+1\right)\)

\(=\left(x^2+mx+n\right)\left[\left(x+1\right)^2+m\left(x+1\right)+n\right]\)

\(=f\left(x\right).f\left(x+1\right)\)

Thay \(x=2021\)

\(\Rightarrow f\left[f\left(2021\right)+2021\right]=f\left(2021\right).f\left(2022\right)\)

Đặt \(f\left(2021\right)+2021=k\)

Do \(f\left(x\right)\) có hệ số m;n nguyên \(\Rightarrow k\) nguyên

\(\Rightarrow f\left(k\right)=f\left(2021\right).f\left(2022\right)\) với k nguyên 

Hay tồn tại số nguyên k thỏa mãn yêu cầu