Cho hàm số y = ( 2-m)x + 3
a) Vẽ đồ thị với m = 3.
b) Tìm m để hàm số đồng biến
c)Tìm m để đồ thị hàm số đi qua M(-1;1)
d)Tìm m để đường thẳng song song với y = -x +2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,HS\text{Đ}B\Leftrightarrow a>0\\ \Leftrightarrow2m-4>0\\ \Leftrightarrow m>2\\ b,Thay:x_A=2;y_A=3.v\text{à}oHS:\\ y_A=\left(2m-4\right).x_A+m-1\\ \Leftrightarrow3=\left(2m-4\right).2+m-1\\ \Leftrightarrow5m=12\\ \Leftrightarrow m=\dfrac{12}{5}\\ c,m=3\Rightarrow y=\left(2.3-4\right)x+3-1=2x+2\)
Em tự vẽ đồ thi cho pt y=2x+2 nha!
a) Hàm số đồng biến khi m - 2 > 0
<=> m > 2
Hàm số nghịch biến khi m - 2 < 0
<=> m < 2
b) Vì A(1;-2) thuộc đồ thị
=> -2 = 1 ( m - 2 ) + 3
<=> -2 = m - 2 + 3
<=> m = 1
Vậy m = 1
a) Để hàm số đạt giá trị nhỏ nhất bằng 0 khi x=0 thì 2m-1>0
\(\Leftrightarrow2m>1\)
hay \(m>\dfrac{1}{2}\)
b) Để hàm số đồng biến khi x<0 và nghịch biến khi x>0 thì 2m-1<0
\(\Leftrightarrow2m< 1\)
hay \(m< \dfrac{1}{2}\)
a: Để (1) đồng biến thì m-1>0
=>m>1
Để (1) nghịch biến thì m-1<0
=>m<1
b: Khi m=0 thì (1) sẽ là y=-x+2
c: y=(m-1)x+2-m
=mx-x+2-m
=m(x-1)-x+2
Điểm mà (1) luôn đi qua là:
x-1=0 và y=-x+2
=>x=1 và y=-1+2=1
a: Để hàm số nghịch biến thì m-2<0
hay m<2
b: Thay x=3 và y=0 vào hàm số, ta được:
\(3m-6+m+3=0\)
hay \(m=\dfrac{3}{4}\)
Để hàm số y=(m-5)x là hàm số bậc nhất thì \(m-5\ne0\)
hay \(m\ne5\)
1) Để hàm số y=(m-5)x đồng biến trên R thì m-5>0
hay m>5
Để hàm số y=(m-5)x nghịch biến trên R thì m-5<0
hay m<5
2) Để đồ thị hàm số y=(m-5)x đi qua A(1;2) thì
Thay x=1 và y=2 vào hàm số y=(m-5)x, ta được:
m-5=2
hay m=7(nhận)
Vậy: Để đồ thị hàm số y=(m-5)x đi qua A(1;2) thì m=7
Lời giải:
a. Với $m=3$ thì ptđt là $y=-x+3$. Đồ thị $y=-x+3$ như dưới đây:
b. Để hàm số đồng biến thì: $2-m>0$
$\Leftrightarrow m< 2$
c. Để đths đi qua $M(-1;1)$ thì $y_M=(2-m)x_M+3$
$\Leftrightarrow 1=(2-m)(-1)+3$
$\Leftrightarrow m=0$
d. Để đths đã cho với $y=-x+2$ song song với nhau thì:
$2-m=-1$
$\Leftrightarrow m=3$
giúp em với