1.trong mp Oxy, tam giac ABC co A( 2;4) B(4;8) C(13;2) pttq duong phan giac trong goc A la ?
2.trong mp Oxy,ptdt di qua (-2;0) va tao vs duong thang d : x+3y-3=0 mot goc 45o la ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
Gọi G là trọng tâm tam giác \(\Rightarrow G\left(1;1\right)\)
\(\overrightarrow{BC}=\left(1;4\right)\Rightarrow\) đường thẳng d nhận \(\left(1;4\right)\) là 1 vtpt
Phương trình d:
\(1\left(x-1\right)+4\left(y-1\right)=0\Leftrightarrow x+4y-5=0\)
Câu 2:
Có 2 trường hợp thỏa mãn:
- Đường thẳng đi qua M và trung điểm AB
- Đường thẳng qua M và song song AB
TH1:
Gọi N là trung điểm AB \(\Rightarrow N\left(-1;2\right)\Rightarrow\overrightarrow{MN}=\left(-11;0\right)\)
\(\Rightarrow\) Đường thẳng MN nhận \(\left(0;1\right)\) là 1 vtpt
Phương trình MN:
\(0\left(x-10\right)+1\left(y-2\right)=0\Leftrightarrow y-2=0\)
TH2: \(\overrightarrow{AB}=\left(-8;4\right)=-4\left(2;-1\right)\)
Đường thẳng d song song AB nên nhận \(\left(1;2\right)\) là 1 vtpt
Phương trình d:
\(1\left(x-10\right)+2\left(y-2\right)=0\Leftrightarrow x+2y-14=0\)
tức là tìm ptdt đenta ý nó cho biết ptdt đenta qua d1 còn đâu là tìm nó
Bài 1:
Gọi A và B lầm lượt là giao điểm của d với Ox và Oy
\(\Rightarrow A\left(3;0\right)\) ; \(B\left(0;5\right)\)
\(\Rightarrow\left\{{}\begin{matrix}OA=\left|x_A\right|=3\\OB=\left|y_B\right|=5\end{matrix}\right.\) \(\Rightarrow S_{OAB}=\frac{1}{2}OA.OB=\frac{15}{2}\)
Bài 2:
Đề thiếu, phải đối xứng qua cái gì chứ bạn?
Đặt \(AB=3x\Rightarrow AC=4x\Rightarrow BC=\sqrt{9x^2+16x^2}=5x\)
Theo tính chất phân giác: \(\frac{AE}{AB}=\frac{CE}{BC}\Rightarrow\frac{AE}{3x}=\frac{CE}{5x}\Rightarrow AE=\frac{3}{5}CE\)
\(\Rightarrow CE+\frac{3}{5}CE=4x\Rightarrow CE=\frac{5}{2}x\)
Gọi H là hình chiếu của E lên BC \(\Rightarrow EH\) nhận \(\overrightarrow{n_{EH}}=\left(4;-3\right)\) là 1 vtpt
Phương trình EH: \(4x-3y-6=0\)
Toạ độ H là nghiệm: \(\left\{{}\begin{matrix}3x+4y-7=0\\4x-3y-6=0\end{matrix}\right.\) \(\Rightarrow H\left(\frac{9}{5};\frac{2}{5}\right)\)
Do \(\Delta CHE\sim\Delta CAB\Rightarrow\frac{CH}{CA}=\frac{CE}{BC}\Rightarrow CH=\frac{CE.AC}{BC}=\frac{\frac{5}{2}x.4x}{5x}=2x\)
\(\Rightarrow CH=\frac{2}{3}HB\Rightarrow\overrightarrow{CH}=\frac{2}{3}\overrightarrow{HB}\)
Gọi \(C\left(c;\frac{7-3c}{4}\right)\); do \(\left\{{}\begin{matrix}\overrightarrow{EA}=\frac{3}{5}\overrightarrow{CE}\\\overrightarrow{CH}=\frac{2}{3}\overrightarrow{HB}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}A\left(-\frac{3}{5}c;\frac{9c-85}{20}\right)\\B\left(\frac{9-3c}{2};\frac{-43+45c}{40}\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AB}=\left(\frac{45-9c}{10};\frac{27c-127}{40}\right)\\\overrightarrow{AC}=\left(\frac{8c}{5};\frac{60-9c}{10}\right)\end{matrix}\right.\)
\(AB\perp AC\Rightarrow\overrightarrow{AB}.\overrightarrow{AC}=0\Rightarrow\frac{8c\left(45-9c\right)}{50}+\frac{\left(27c-127\right)\left(60-9c\right)}{400}=0\)
Giải pt này sẽ xong bài toán, xấu quá :(
a, kẻ NO // AB
=> góc MAN = góc ONC (đv) (1)
góc ABO = góc NOC (đv) (2)
NO // AB (vc) => NOAB là hình thang
Mx // BC (gt)
=> MN = BO (tc)
MB = NO (tc) (3)
(1)(2)(3) => tam giác AMN = tam giác NOC (g-c-g)
=> AN = NC (đn) mà N nằm giữa A và C
=> N là trung điểm của AC (đn)
b, M là trd của AB (gt)
N là trd của AC (Câu a)
=> MN là đường trung bình của tam giác ABC (đn)
=> MN = 1/2BC (Đl)
mà BC = a
=> MN = a/2
\(\overrightarrow{AB}=\left(2;4\right);\overrightarrow{AC}=\left(11;-2\right);\overrightarrow{BC}=\left(9;-6\right)\)
\(\Rightarrow AB=2\sqrt{5};AC=5\sqrt{5};BC=3\sqrt{13}\)
Gọi D là chân đường phân giác trong góc A trên BC
\(\frac{DB}{DC}=\frac{AB}{AC}=\frac{2}{5}\Rightarrow BD=\frac{2}{5}CD=\frac{2}{7}BC\Rightarrow\overrightarrow{BD}=\frac{2}{7}\left(9;-6\right)\)
\(\Rightarrow D\left(\frac{46}{7};\frac{44}{7}\right)\Rightarrow\overrightarrow{AD}=\left(\frac{32}{7};\frac{16}{7}\right)=\frac{16}{7}\left(2;1\right)\)
\(\Rightarrow\) Đường thẳng AD nhận \(\left(1;-2\right)\) là 1 vtpt
Phương trình AD:
\(1\left(x-2\right)-2\left(y-4\right)=0\Leftrightarrow x-2y+6=0\)
2.
Đường thẳng d có 1 vtpt là \(\left(1;3\right)\)
Gọi vtpt của d' là \(\left(a;b\right)\Rightarrow cos45^0=\frac{\left|a+3b\right|}{\sqrt{10\left(a^2+b^2\right)}}=\frac{1}{\sqrt{2}}\)
\(\Leftrightarrow a^2+6ab+9b^2=5a^2+5b^2\)
\(\Leftrightarrow4a^2-6ab-4b^2=0\Leftrightarrow\left(2a+b\right)\left(a-2b\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}b=-2a\\a=2b\end{matrix}\right.\)
Chọn \(a=2\Rightarrow\left[{}\begin{matrix}b=-4\\b=1\end{matrix}\right.\)
Có 2 đường thẳng thỏa mãn:
\(\left[{}\begin{matrix}1\left(x+2\right)-2\left(y-0\right)=0\\2\left(x+2\right)+1\left(y-0\right)=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x-2y+2=0\\2x+y+4=0\end{matrix}\right.\)